...
首页> 外文期刊>Bulletin of the American Physical Society >APS -APS March Meeting 2017 - Event - Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems
【24h】

APS -APS March Meeting 2017 - Event - Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

机译:APS -APS 2017年3月会议-活动-共轭嵌段共聚物作为模型材料,研究供体-受体系统中的电荷转移

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures --where critical interfaces are controlled and stabilized by covalent bonds-- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3{%} power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.
机译:分子间的弱相互作用和不同有机材料交界处的无序性限制了有机界面的性能和稳定性,从而限制了有机半导体对电子设备的适用性。界面结构缺乏控制也阻止了对驱动力如何促进电荷光生的研究,从而导致有机光伏文献中相互矛盾的假设。我们的方法侧重于利用嵌段共聚物体系结构-通过共价键控制和稳定关键界面-从自组装软材料提供高性能有机电子产品所需的分层结构。例如,我们已经证明了通过微相分离的共轭嵌段共聚物控制供体-受体异质结,以在非富勒烯光伏电池中实现3 {%}的功率转换效率。此外,将供体-受体界面并入分子结构有助于研究电荷转移过程。共轭嵌段共聚物能够研究激子离解为电荷转移状态所需的驱动力,该驱动力必须很大才能使电荷光生化最大化,但必须最小化以防止太阳能电池器件中的光电压损失。我们的工作系统地改变了化学结构,能量和介电常数,以扰动电荷转移。结果,我们预测了使驱动力最小化并因此同时使有机光伏器件中的光电流和光电压最大化所需的最小介电常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号