...
首页> 外文期刊>Journal of bacteriology >Genetic Control of Osmoadaptive Glycine Betaine Synthesis in Bacillus subtilis through the Choline-Sensing and Glycine Betaine-Responsive GbsR Repressor
【24h】

Genetic Control of Osmoadaptive Glycine Betaine Synthesis in Bacillus subtilis through the Choline-Sensing and Glycine Betaine-Responsive GbsR Repressor

机译:通过胆碱敏感和甜菜碱甜菜碱响应的GbsR阻遏物在枯草芽孢杆菌中渗透适应性甘氨酸甜菜碱合成的遗传控制。

获取原文

摘要

Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.
机译:相容性溶质甘氨酸甜菜碱的合成赋予枯草芽孢杆菌相当大的渗透胁迫耐受性。这种渗透保护剂是通过渗透诱导型OpuB和OpuC ABC转运蛋白摄取前体胆碱并随后由GbsB和GbsA酶进行的两步氧化过程产生的。我们表征了一种调节蛋白GbsR,它控制甘氨酸甜菜碱生物合成酶( gbsAB )和胆碱特异性OpuB转运蛋白( opuB )的结构基因的转录),但对于混杂的OpuC转运蛋白则不是。 GbsR在基因上起阻遏作用,并起细胞内胆碱传感器的作用。纯化的GbsR蛋白的光谱分析表明,它与诱导胆碱结合,其表观 K D (平衡解离常数)约为165μM。基于詹氏甲烷球菌的蛋白质(Mj223)的X射线结构,得出了GbsR的同源性模型。对这种GbsR in silico 模型的检查表明,胆碱可能具有类似配体结合的口袋,类似于微生物ABC转运蛋白的溶质受体中存在的已知胆碱结合位点,例如OpuBC配体结合蛋白OpuB ABC转运蛋白。响应胆碱的可用性,不仅需要GbsR来控制 gbsAB opuB 的表达,而且一旦实现了细胞对高渗透压的调节,就需要从基因上调低甘氨酸甜菜碱的产量。因此,来自枯草芽孢杆菌的GbsR调节蛋白记录并整合了细胞和环境信号,用于渗透保护剂甘氨酸甜菜碱的合成的开始和抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号