...
首页> 外文期刊>Journal of bacteriology >Autoregulation of the MisR/MisS Two-Component Signal Transduction System in Neisseria meningitidis
【24h】

Autoregulation of the MisR/MisS Two-Component Signal Transduction System in Neisseria meningitidis

机译:脑膜炎奈瑟氏球菌MisR / MisS两组分信号转导系统的自动调节

获取原文

摘要

Two-component regulatory systems are involved in processes important for bacterial pathogenesis. The proposed misR/misS (or phoP/phoQ) system is one of four two-component systems of the obligate human pathogen Neisseria meningitidis. Inactivation of this system results in loss of phosphorylation of the lipooligosaccharide inner core and causes attenuation in a mouse model of meningococcal infection. MisR and the cytoplasmic domain of MisS were purified as His6 and maltose binding protein fusion proteins, respectively. The MisS fusion was shown to be autophosphorylated in the presence of ATP, and the phosphoryl group was subsequently transferred to MisR. The phosphotransfer reaction was halted with a MisR/D52A mutation, while a MisS/H246A mutation prevented autophosphorylation. Specific interaction of phosphorylated MisR (MisR~P) and MisR with the misR promoter was demonstrated by gel mobility shift assays, where MisR~P exhibited higher affinity than did the nonphosphorylated protein. The transcriptional start site of the misRS operon was mapped, and DNase I protection assays revealed that MisR interacted with a 15-bp region upstream of the transcriptional start site that shared no similarity to binding motifs of other two-component systems. Transcriptional reporter studies suggested that MisR phosphorylation is critical for the autoinduction of the misRS operon. Limited Mg2+ concentration failed to induce expression of the misRS operon, which is the only operon now proven to be under the direct control of the MisRS two-component system. Thus, these results indicate that the meningococcal MisRS system constitutes a functional signal transduction circuit and that both components are critical in the autoregulation of their expression.
机译:两成分的调节系统参与细菌发病机理重要的过程。拟议的 misR / misS (或 phoP / phoQ )系统是该系统的四个两组件系统之一专一的人类病原体脑膜炎奈瑟菌。该系统的失活导致脂寡糖内核的磷酸化丧失,并导致脑膜炎球菌感染的小鼠模型减弱。 MisR和MisS的胞质结构域分别纯化为His 6 和麦芽糖结合蛋白融合蛋白。显示MisS融合体在ATP存在下会自动磷酸化,随后磷酸基转移到MisR。磷酸转移反应因MisR / D52A突变而停止,而MisS / H246A突变阻止了自身磷酸化。磷酸化的MisR(MisR〜P)和MisR与 misR 启动子的特异性相互作用通过凝胶迁移率迁移实验证明,其中MisR〜P表现出比非磷酸化蛋白更高的亲和力。绘制了 misRS 操纵子的转录起始位点,并且进行DNase I保护试验发现,MisR与转录起始位点上游的15 bp区域相互作用,该区域与其他两个RS的结合基序没有相似之处组件系统。记者的转录研究表明,MisR磷酸化对于 misRS 操纵子的自诱导至关重要。有限的Mg 2 + 浓度无法诱导 misRS 操纵子的表达,这是目前证明唯一受MisRS两组分系统直接控制的操纵子。因此,这些结果表明脑膜炎球菌的MisRS系统构成了功能性信号转导电路,并且这两个组件在其表达的自动调节中都至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号