首页> 外文期刊>Journal of cell biology >Mechanisms of Epithelial Cell–Cell Adhesion and Cell Compaction Revealed by High-resolution Tracking of E-Cadherin– Green Fluorescent Protein
【24h】

Mechanisms of Epithelial Cell–Cell Adhesion and Cell Compaction Revealed by High-resolution Tracking of E-Cadherin– Green Fluorescent Protein

机译:E-钙黏着蛋白-绿色荧光蛋白的高分辨率跟踪揭示了上皮细胞-细胞粘附和细胞紧缩的机制

获取原文
           

摘要

Cadherin-mediated adhesion initiates cell reorganization into tissues, but the mechanisms and dynamics of such adhesion are poorly understood. Using time-lapse imaging and photobleach recovery analyses of a fully functional E-cadherin/GFP fusion protein, we define three sequential stages in cell–cell adhesion and provide evidence for mechanisms involving E-cadherin and the actin cytoskeleton in transitions between these stages. In the first stage, membrane contacts between two cells initiate coalescence of a highly mobile, diffuse pool of cell surface E-cadherin into immobile punctate aggregates along contacting membranes. These E-cadherin aggregates are spatially coincident with membrane attachment sites for actin filaments branching off from circumferential actin cables that circumscribe each cell. In the second stage, circumferential actin cables near cell–cell contact sites separate, and the resulting two ends of the cable swing outwards to the perimeter of the contact. Concomitantly, subsets of E-cadherin puncta are also swept to the margins of the contact where they coalesce into large E-cadherin plaques. This reorganization results in the formation of a circumferential actin cable that circumscribes both cells, and is embedded into each E-cadherin plaque at the contact margin. At this stage, the two cells achieve maximum contact, a process referred to as compaction. These changes in E-cadherin and actin distributions are repeated when additional single cells adhere to large groups of cells. The third stage of adhesion occurs as additional cells are added to groups of 3 cells; circumferential actin cables linked to E-cadherin plaques on adjacent cells appear to constrict in a purse-string action, resulting in the further coalescence of individual plaques into the vertices of multicell contacts. The reorganization of E-cadherin and actin results in the condensation of cells into colonies. We propose a model to explain how, through strengthening and compaction, E-cadherin and actin cables coordinate to remodel initial cell–cell contacts to the final condensation of cells into colonies.
机译:钙黏着蛋白介导的粘附可启动细胞重组进入组织,但这种粘附的机制和动力学知之甚少。使用延时成像和功能齐全的E-钙粘蛋白/ GFP融合蛋白的光漂白恢复分析,我们定义了细胞-细胞粘附的三个连续阶段,并为这些阶段之间过渡涉及E-钙粘蛋白和肌动蛋白细胞骨架的机制提供了证据。在第一阶段,两个细胞之间的膜接触启动了一个高度移动的,分散的细胞表面E-钙粘蛋白池的聚结,沿着接触膜进入固定的点状聚集体。这些E-钙粘蛋白聚集体在空间上与肌动蛋白丝的膜附着位点重合,肌动蛋白丝从外接每个细胞的圆周肌动蛋白电缆分支出来。在第二阶段,细胞间接触点附近的周向肌动蛋白电缆分开,并且电缆的两端向外摆动到接触的周边。随之而来的是,E-钙粘蛋白点状的子集也被扫到接触的边缘,在那里它们合并成大的E-钙粘蛋白斑。这种重组导致形成环绕两个细胞的周向肌动蛋白电缆,并在接触边缘嵌入每个E-钙粘蛋白斑块中。在此阶段,两个单元达到最大接触,此过程称为压实。当其他单个细胞粘附到大组细胞时,会重复发生E-钙粘蛋白和肌动蛋白分布的变化。粘附的第三阶段发生在将其他细胞添加到> 3个细胞的组中时;与相邻细胞上的E-钙黏着蛋白斑块相连的周向肌动蛋白电缆似乎在束线作用中收缩,从而导致单个斑块进一步聚结到多细胞接触的顶点。 E-钙粘着蛋白和肌动蛋白的重组导致细胞凝结成集落。我们提出了一个模型来解释如何通过增强和压紧来使E-钙粘蛋白和肌动蛋白电缆协调以重塑最初的细胞间接触,最终使细胞凝结成集落。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号