首页> 外文期刊>Procedia Computer Science >Order and Chaos in the Brain: Fractal Time Series Analysis of the EEG Activity During a Cognitive Problem Solving Task
【24h】

Order and Chaos in the Brain: Fractal Time Series Analysis of the EEG Activity During a Cognitive Problem Solving Task

机译:大脑中的有序和混乱:认知问题解决任务期间脑电活动的分形时间序列分析

获取原文
           

摘要

The study of brain dynamics has been approached from different mathematical strategies with the aim to obtain more information of the bioelectrical signals coming from an electroencephalogram (EEG). Although several of these tools try to conciliate the fact of using linear approaches to study a non-linear phenomenon, during the last years a set of complementary and alternative approaches has been used to mine deeper into the nature of the brain dynamics and its correlates with experience, thoughts and actions. One of these approaches comes from chaos theory and fractal geometry and considers a model where brain activity, as a time series of an electrical potential variation (EEG) recorded from the scalp, can be assumed as a dynamical state that moves in the range of 1/ f α (fractal) noise. In this model it is possible to see brain dynamics as a functional state who moves from more chaotic or unpredictable dynamics (Brown or Gaussian uncorrelated noise), to quasi-chaotic or statistical noise (fractal or self-similar noise). The amount of order into the chaotic EEG background must be an indicator of the organization of brain procedural resources dealing with different circumstances. At the same time, it must reflect the degree of inter-individual differences and intra-individual variability in the way each different brain works. To test this hypothesis we implemented a study where EEG activity was recorded during the performing of a simple visual intelligent test (Raven test, abbreviated version of 15 questions) in a set of 10 adults to study their similarities and differences in the rendering of the test (estimated range of IQ) and in the process of solving the easy and the difficult part of the test. We estimated the Hurst exponent and the fractal dimension of the time series for each of the 14 EEG channels (Emotiv-Epoc? BCI headset) and searched for correlations and consistencies in the values of H and the difficulty level of the cognitive task. We found that order tend to emerge from a chaotic background when brain focuses on problem solving, rising the degree of predictability, self-similarity and persistent behavior of the EEG signal.
机译:为了获得更多来自脑电图(EEG)的生物电信号的信息,已经从不同的数学策略进行了脑动力学研究。尽管这些工具中的几种工具试图调和使用线性方法研究非线性现象的事实,但在最近几年中,已经使用了一组互补和替代方法来更深入地探究脑动力学的本质及其与脑电动力学的关系。经验,思想和行动。这些方法之一来自混沌理论和分形几何,并考虑了一个模型,在该模型中,大脑活动作为从头皮记录的电势变化(EEG)的时间序列,可以假定为在1范围内移动的动态状态。 / fα(分形)噪声。在此模型中,可能会将大脑动力学视为一种功能状态,从更多的混沌或不可预测的动力学(布朗或高斯不相关噪声)变为准混沌或统计噪声(分形或自相似噪声)。混乱的EEG背景下的命令数量必须是处理不同情况的大脑程序资源组织的指标。同时,它必须以每个不同大脑的工作方式反映个体差异和个体内部变异的程度。为了检验该假设,我们进行了一项研究,其中在一组10位成年人中,在执行简单的视觉智能测试(Raven测试,15个问题的缩写)期间记录了脑电活动,以研究他们在测试渲染中的相似性和差异(智商的估计范围)以及在解决测试中容易和难的部分的过程中。我们估计了14个EEG通道(Emotiv-Epoc?BCI耳机)中每个通道的Hurst指数和时间序列的分形维数,并搜索了H值和认知任务的难度水平之间的相关性和一致性。我们发现,当大脑专注于解决问题时,秩序往往会从混乱的背景中浮现出来,从而提高了脑电信号的可预测性,自相似性和持续行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号