首页> 外文期刊>Procedia Computer Science >Shift-invariant similarities circumvent distance concentration in stochastic neighbor embedding and variants
【24h】

Shift-invariant similarities circumvent distance concentration in stochastic neighbor embedding and variants

机译:随机邻域嵌入和变异中的不变位移相似性规避距离集中

获取原文
           

摘要

Dimensionality reduction aims at representing high-dimensional data in low-dimensional spaces, mainly for visualization and exploratory purposes. As an alternative to projections on linear subspaces, nonlinear dimensionality reduction, also known as manifold learning, can provide data representations that preserve structural properties such as pairwise distances or local neighborhoods. Very recently, similarity preservation emerged as a new paradigm for dimensionality reduction, with methods such as stochastic neighbor embedding and its variants. Experimentally, these methods significantly outperform the more classical methods based on distance or transformed distance preservation.This paper explains both theoretically and experimentally the reasons for these performances. In particular, it details (i) why the phenonomenon of distance concentration is an impediment towards effcient dimensionality reduction and (ii) how SNE and its variants circumvent this diffculty by using similarities that are invariant to shifts with respect to squared distances. The paper also proposes a generalized definition of shift-invariant similarities that extend the applicability of SNE to noisy data.
机译:降维的目的是在低维空间中表示高维数据,主要是为了可视化和探索目的。作为线性子空间上投影的替代方法,非线性降维(也称为流形学习)可以提供保留结构特性(如成对距离或局部邻域)的数据表示。最近,利用诸如随机邻居嵌入及其变体之类的方法,相似性保留已成为降维的新范式。从实验上讲,这些方法明显优于基于距离或保留距离的经典方法。本文从理论和实验上解释了这些性能的原因。特别是,它详细说明了(i)距离集中现象为何会阻碍有效降维,以及(ii)SNE及其变体如何通过使用平方距离不变的相似性来规避这种困难。本文还提出了位移不变相似性的广义定义,将SNE的适用性扩展到了噪声数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号