首页> 外文期刊>RSC Advances >Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation
【24h】

Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation

机译:局部表面等离子体激元共振增强光催化:实验和理论机制的研究

获取原文
获取外文期刊封面目录资料

摘要

Titanium dioxide (TiO _(2) ) is an advantageous material in catalytic photodegradation due to its low cost, high stability, and considerably higher efficiency when compared to other semiconductors. However, the need for artificial radiation sources in the UV range is a limitation to its use in wastewater remediation. In this context, Localized Surface Plasmon Resonance (LSPR) has been shown to enhance the photoexcitation of charge carriers in the semiconductor. In the present work, the investigation of catalytic photodegradation of phenol solution under distinct excitation by UV-visible or just visible radiation, employing three TiO _(2) based plasmonic catalysts, was conducted. Spherical silver nanoparticles which present LSPR along the TiO _(2) bandgap energy and electrically insulated silver nanoparticles were employed. Gold nanoparticles, which present low energy LSPR, were also employed in order to compare the excitation efficiency. Discrete dipole approximation simulations were carried out in order to verify the electric field enhancement and penetration at the semiconductor surface of each plasmonic catalyst. The results presented here may help to shed some light with respect to the contribution of plasmonic photocatalysts and the charge transfer mechanism in catalysts containing plasmonic structures.
机译:与其他半导体相比,二氧化钛(TiO_(2))具有低成本,高稳定性和相当高的效率,因此是催化光降解中的有利材料。然而,对于紫外线范围的人工辐射源的需求限制了其在废水修复中的使用。在这种情况下,局部表面等离振子共振(LSPR)已被证明可以增强半导体中载流子的光激发。在目前的工作中,采用三种基于TiO _(2)的等离激元催化剂,研究了在紫外可见光或仅可见光的不同激发下苯酚溶液的光催化降解。使用了沿TiO_(2)带隙能量呈现LSPR的球形银纳米颗粒和电绝缘的银纳米颗粒。为了比较激发效率,还使用了呈现低能量LSPR的金纳米颗粒。为了验证电场的增强和在每个等离激元催化剂的半导体表面的渗透,进行了离散偶极近似模拟。本文介绍的结果可能有助于阐明等离子光催化剂的作用以及含等离子结构的催化剂中的电荷转移机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号