首页> 外文期刊>RSC Advances >Morphology and phase tuning of α- and β-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour
【24h】

Morphology and phase tuning of α- and β-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour

机译:α-和β-MnO 2 纳米仙人掌在不同的酸计数模式下形成的形态和相位调节,因为它们具有良好的能量存储和可见光驱动的光催化行为

获取原文
           

摘要

A simple hydrothermal method is developed to synthesize two different phases, α and β of MnO2 nanocacti (comprising nanowires with 1–10 nm diameter self assembled by ultrathin sheets) as well as MnO2 nanorods (10–40 nm diameter) without any seed or template. Sudden addition of concentrated H2SO4 (0.3–0.4 μL) results in the formation of nanocacti while gradual addition (dropwise) of H2SO4 solution (0.3–0.4 M) results in nanorods. Besides, the α phase of MnO2 exists at relatively high acidic strength (4 pH) compared to the β phase, which is consistent at 5 pH. Thus this could be the first report exploring the possibilities of tuning morphology as well as the phase of MnO2 through simple optimizations in acidic content. We find that polymorphic MnO2 nanocacti exhibit superior photocatalytic activity and high energy capacity as an anode in Li-ion batteries than polymorphic MnO2 nanorods. The α phase of MnO2 performs better than the β phase. α-MnO2 nanocacti demonstrate high visible light driven photocatalytic activity by degrading >90% of congo red and methyl orange dyes in 40 mg L?1 organic dye aqueous solution with 0.1 g of the as-prepared sample within 25 and 70 min, respectively. We highlight the differences between the photocatalytic activities of different phases, α and β of MnO2 nanostructures, depending on the charge transport through different dimensions of the same pristine MnO2. The constant cycling stability of α-MnO2 nanocacti with capacities as low as 300 mA h g?1 at 1C rate after 50 cycles as an anode makes it a promising material for energy storage applications. We attribute the high electro- and photo-chemical activity for α-MnO2 nanocacti to their highly mesoporous structure making this one of the highest specific surface areas (271 m2 g?1) possibly ever reported for pristine MnO2.
机译:还开发了一种简单的水热法来合成MnO 2 纳米仙人掌(包含直径为1-10 nm的纳米线,由超薄片自组装)的两个不同的相。不含任何种子或模板的MnO 2 纳米棒(直径10–40 nm)。突然添加浓H 2 SO 4 (0.3–0.4μL)会形成纳米仙人掌,而逐渐H 2 SO 4 溶液(0.3–0.4 M)的添加(逐滴)产生纳米棒。此外,MnO 2 的α相与β相相比存在较高的酸性强度(4 pH),在5 pH时保持一致。因此,这可能是第一个报告,通过对酸性含量的简单优化,探讨了形态调整的可能性以及MnO 2 的相。我们发现多晶型MnO 2 纳米仙人掌比多晶型MnO 2 纳米棒。 MnO 2 的α相表现优于β相。 α-MnO 2 纳米仙人掌通过降解40 mg L ?1中的> 90%的刚果红和甲基橙染料,表现出高可见光驱动的光催化活性。 有机染料水溶液,分别在25和70分钟内含0.1 g制备的样品。我们强调了不同相的MnO 2 纳米结构的光催化活性之间的差异,这取决于相同原始MnO 通过不同尺寸的电荷传输 2 。容量低至300 mA hg ?1 的α-MnO 2 纳米仙人掌在1C时的恒定循环稳定性50次循环后作为阳极的高倍率使其成为用于储能应用的有前途的材料。我们将α-MnO 2 纳米仙人掌的高电化学和光化学活性归因于其高度介孔结构,使其成为最高比表面积之一(271 m 2 g ?1 )可能曾经报告过原始MnO 2

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号