首页> 外文期刊>RSC Advances >Gap maximum of graphene nanoflakes: a first-principles study combined with the Monte Carlo tree search method
【24h】

Gap maximum of graphene nanoflakes: a first-principles study combined with the Monte Carlo tree search method

机译:石墨烯纳米薄片的最大缝隙:结合蒙特卡洛树搜索方法的第一性原理研究

获取原文
       

摘要

The energy gap of graphene nanoflakes is important for their potential application in nano-devices; however, it is still a challenge to perform a systemic search of systems with large gaps due to the presence of numerous candidates. Herein, we showed an ideal feasible approach that involved structural recognition, simplified effective evaluation, and successive optimization strategy. Considering the local bonding environment of carbon atoms, we first proposed a tight-binding model with the parameters fitted from the first-principles calculations of possible GNFs; this model provided an ideal avenue to screen the candidates with high accuracy and efficiency. Via combining the Monte Carlo tree search method and the congruence check, we determined the correlation between structures and the gap distributions according to the carbon numbers, and the results were confirmed via the first-principles calculations. The structural stabilities of the candidates with different numbers of hydrogen atoms might be modulated by the chemical potential of hydrogen, whereas the candidates with larger gaps might be more stable for the isomers with the same number of C and H atoms. Note that the gap variation is dominated by the structural features despite the quantum confinement effect since the gap maximum fluctuates rather than gradually decreasing with the increase in size. Our finding shows the gap variety of GNFs due to the configuration diversity, which may help explore the potential application of GNFs in nano-devices and fluorescence labeling in biomedicine.
机译:石墨烯纳米薄片的能隙对于它们在纳米器件中的潜在应用至关重要。然而,由于存在大量候选者,对具有较大缺口的系统进行系统搜索仍然是一个挑战。在此,我们展示了一种理想的可行方法,该方法涉及结构识别,简化的有效评估以及连续的优化策略。考虑到碳原子的局部键合环境,我们首先提出了一个紧密结合的模型,其参数是根据可能的GNF的第一性原理计算得出的。该模型提供了一种理想的途径,可以高效,准确地筛选候选人。 Via 结合蒙特卡罗树搜索方法和一致性检验,根据碳原子数确定了结构与间隙分布之间的相关性,并通过第一性原理计算。具有不同氢原子数的候选物的结构稳定性可能受到氢的化学势的调节,而具有较大空位的候选物对于具有相同数目的C和H原子的异构体可能更稳定。注意,尽管有量子限制效应,但间隙的变化仍受结构特征的支配,因为间隙的最大值是波动的,而不是随尺寸的增加而逐渐减小的。我们的发现表明,由于构型的多样性,GNF的缺口具有多样性,这可能有助于探索GNF在纳米装置中的潜在应用以及在生物医学中的荧光标记。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号