...
首页> 外文期刊>MATEC Web of Conferences >The relevance of non-stationarities and non-Gaussianities in vibration fatigue
【24h】

The relevance of non-stationarities and non-Gaussianities in vibration fatigue

机译:非平稳性与非高斯性在振动疲劳中的相关性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In classical fatigue of materials, the frequency contents of dynamic loading are well below the natural frequencies of the observed structure or test specimen. However, when dealing with vibration fatigue the frequency contents of dynamic loading and structure's dynamic response overlap, resulting in amplified stress loads of the structure. For such cases, frequency counting methods are especially convenient. Gaussianity and stationarity assumptions are applied in frequency-domain methods for obtaining dynamic structure's response and frequency-domain methods for calculating damage accumulation rate. Since it is common in real environments for the structure to be excited with non-Gaussian and non-stationary loads, this study addresses the effects of such dynamic excitation to experimental time-to-failure of a structure. Initially, the influence of non-Gaussian stationary excitation is experimentally studied via excitation signals with equal power density spectrum and different values of kurtosis. Since no relevant changes of structure's time-to-failure were observed, the study focused on non-stationary excitation signals that are also inherently non-Gaussian. The non-stationarity of excitation was achieved by amplitude modulation and significantly shorter times-to-failure were observed when compared to experiments with stationary non-Gaussian excitation. Additionally, the structure's time-to-failure varied with the rate of the amplitude modulation. To oversee this phenomenon the presented study proposes a non-stationarity index which can be obtained from the excitation time history. The non-stationarity index was experimentally confirmed as a reliable estimator for severity of non-stationary excitation. The non-stationarity index is used to determine if the frequencydomain methods can safely be applied for time-to-failure calculation.
机译:在经典的材料疲劳中,动态载荷的频率含量远低于观察到的结构或试样的固有频率。但是,在处理振动疲劳时,动态载荷的频率内容和结构的动态响应重叠,导致结构的应力载荷增大。对于这种情况,频率计数方法特别方便。高斯假设和平稳假设在频域方法中用于获取动态结构的响应,在频域方法中用于计算损伤累积率。由于在非真实环境中使用非高斯和非静态载荷来激发结构是很常见的,因此本研究解决了这种动态激发对结构的实验失效时间的影响。最初,通过具有相等功率密度谱和不同峰度值的激励信号,通过实验研究了非高斯平稳激励的影响。由于未观察到结构失效时间的相关变化,因此该研究集中于非平稳激励信号,该信号本身也是非高斯的。通过振幅调制实现了激励的非平稳性,并且与固定的非高斯激励的实验相比,观察到的故障时间明显缩短。另外,结构的失效时间随振幅调制的速率而变化。为了监督这种现象,本研究提出了一种非平稳性指数,可以从激发时间历史中获得。实验证明,非平稳性指标是非平稳性刺激严重程度的可靠估计。非平稳性指标用于确定频域方法是否可以安全地应用于故障发生时间的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号