...
首页> 外文期刊>Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation >Estimating the Effective Population Size from Temporal Allele Frequency Changes in Experimental Evolution
【24h】

Estimating the Effective Population Size from Temporal Allele Frequency Changes in Experimental Evolution

机译:从实验进化中的时间等位基因频率变化估算有效种群大小

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The effective population size (![Formula][1]/img) is a major factor determining allele frequency changes in natural and experimental populations. Temporal methods provide a powerful and simple approach to estimate short-term ![Formula][2]/img They use allele frequency shifts between temporal samples to calculate the standardized variance, which is directly related to ![Formula][3]/img Here we focus on experimental evolution studies that often rely on repeated sequencing of samples in pools (Pool-seq). Pool-seq is cost-effective and often outperforms individual-based sequencing in estimating allele frequencies, but it is associated with atypical sampling properties: Additional to sampling individuals, sequencing DNA in pools leads to a second round of sampling, which increases the variance of allele frequency estimates. We propose a new estimator of ![Formula][4]/img which relies on allele frequency changes in temporal data and corrects for the variance in both sampling steps. In simulations, we obtain accurate ![Formula][5]/img estimates, as long as the drift variance is not too small compared to the sampling and sequencing variance. In addition to genome-wide ![Formula][6]/img estimates, we extend our method using a recursive partitioning approach to estimate ![Formula][7]/img locally along the chromosome. Since the type I error is controlled, our method permits the identification of genomic regions that differ significantly in their ![Formula][8]/img estimates. We present an application to Pool-seq data from experimental evolution with Drosophila and provide recommendations for whole-genome data. The estimator is computationally efficient and available as an R package at https://github.com/ThomasTaus/Nest. [1]: /embed/mml-math-1.gif [2]: /embed/mml-math-2.gif [3]: /embed/mml-math-3.gif [4]: /embed/mml-math-4.gif [5]: /embed/mml-math-5.gif [6]: /embed/mml-math-6.gif [7]: /embed/mml-math-7.gif [8]: /embed/mml-math-8.gif
机译:有效种群大小(![Formula] [1] )是决定自然种群和实验种群等位基因频率变化的主要因素。时间方法为估算短期![Formula] [2] 提供了一种强大而简单的方法。它们使用时间样本之间的等位基因频移来计算标准化方差,这与![Formula] [3]直接相关在这里,我们专注于实验进化研究,该研究通常依赖于池中样品的重复测序(Pool-seq)。 Pool-seq具有成本效益,在估计等位基因频率方面通常胜过基于个体的测序,但它与非典型的采样特性有关:除了对个体进行采样之外,对pool中的DNA进行测序还会导致第二轮采样,从而增加了采样的方差。等位基因频率估计。我们提出了一个新的![Formula] [4] 估计量,该估计量依赖于时间数据中的等位基因频率变化并校正两个采样步骤中的方差。在仿真中,只要漂移方差与采样方差和序列方差相比不太小,我们就可以获得准确的[公式] [5] 估计。除了全基因组![Formula] [6] 估计之外,我们还使用递归分区方法扩展了我们的方法,以沿着染色体局部估计![Formula] [7] 。由于I型错误是受控制的,因此我们的方法允许识别在![Formula] [8] 估计值上有显着差异的基因组区域。我们介绍了果蝇实验进化中的Pool-seq数据的应用,并为全基因组数据提供了建议。估算器在计算上是有效的,并且可以作为R包在上获得。 [1]:/ embed / mml-math-1.gif [2]:/ embed / mml-math-2.gif [3]:/ embed / mml-math-3.gif [4]:/ embed / mml -math-4.gif [5]:/embed/mml-math-5.gif [6]:/embed/mml-math-6.gif [7]:/embed/mml-math-7.gif [8] ]:/embed/mml-math-8.gif

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号