...
首页> 外文期刊>EPJ Web of Conferences >Identification of strain-rate and thermal sensitive material model with an inverse method
【24h】

Identification of strain-rate and thermal sensitive material model with an inverse method

机译:用逆方法识别应变率和热敏材料模型

获取原文
           

摘要

This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.
机译:本文描述了一种数值逆方法,该方法用于从在不同应变率和温度下通过机械测试获得的实验数据中提取材料强度参数。结果表明,当无法通过分析模型正确描述样品中的应力应变场时,该程序对于分析实验结果特别有用。这通常发生在没有规则形状的样本中,发生一些不稳定性现象(例如,在拉伸测试中产生强烈异质应力-应变场的颈缩现象)或动态测试(其中应变率由于波传播现象,磁场不是恒定的。此外,开发的程序对于考虑由于与塑性功的转换有关的绝热过热而通常影响高应变率测试的热现象是有用的。从实验和数值的角度来看,提出的方法都需要付出巨大的努力,无论如何,它允许精确识别不同材料模型的参数。当需要材料性能的高度可靠性时,这可以提供很大的优势。该方法的适用性特别适用于航空航天工程,弹道,耐撞性研究或粒子加速器技术领域的特殊应用,在这些领域中,材料可能会在很宽的温度范围内以高应变速率发生强烈的塑性变形。已经研究了在20°C至1000°C的温度范围内的热软化效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号