...
首页> 外文期刊>Investigative ophthalmology & visual science >Multipolar Return Configurations In Microelectrode Arrays Designed For Retinal Implants: Modeling Effects On Threshold Levels And Dynamic Range
【24h】

Multipolar Return Configurations In Microelectrode Arrays Designed For Retinal Implants: Modeling Effects On Threshold Levels And Dynamic Range

机译:专为视网膜植入物设计的微电极阵列中的多极返回配置:阈值水平和动态范围的建模效果

获取原文

摘要

Purpose: : Estimating the effect of current focusing in the retina using local guard electrodes in conjunction with a distant return electrode. Current thresholds to elicit ganglion cell activation and respective dynamic range are estimated using a finite-element modeling approach. Methods: : a microelectrode array in a hexagonal configuration was modeled solving for required current at the stimulating electrode yielding an electric field magnitude at the ganglion cell layer previously reported to activate ganglion cells. The following parameters has been investigated:- Ratio of h/D (distance from electrode to ganglion cells / electrode diameter): 0.5, 1, and 2- Return electrode configuration: monopolar (distant active return electrode), hexagonal (6 local active return electrodes), and quasi-monopolar (QMP, a mix of hexagonal and distant return configuration)All return electrodes are designed to actively pull current. In the QMP configuration 50% of injected current is recovered through distant and local return electrodes, respectively. Electrodes were chosen to be of 100?μm diameter and 110?μm pitch.Dynamic range was defined as the difference between threshold current and the safe current injection limit for SIROF electrodes. Results: : The dynamic range systematically decreased as the electrode configuration varied from MP to QMP to hexagonal. This effect is more significant for larger electrode/target cell distances (h/D of 2), and hardly noticeable for small distances. This is due to elevated threshold levels for QMP and hexagonal configuration due to partial shunting of stimulating current directly to return electrodes. Conclusions: : Current focusing using multipolar configuration like the hex-return has the benefit of more localized stimulation that is less prone to electric crosstalk. However, depending on electrode geometry and distance from target cells it also has higher threshold levels. We investigated if a mix of return configuration using distant return and local hex return can compensate for this limitation. QMP configuration with 50% distant return was found to lower thresholds and yield higher dynamic ranges as compared to pure hex-configuration. If target cells are very close to stimulating electrodes as could be achieved with penetrating electrodes, return configuration has no influence on threshold levels.
机译:目的::使用局部保护电极和远处的返回电极来估计电流在视网膜中的聚焦效果。使用有限元建模方法来估计引起神经节细胞激活和相应动态范围的当前阈值。方法:对六边形微电极阵列进行建模,以求解刺激电极上所需的电流,从而在先前报道的激活神经节细胞的神经节细胞层产生电场强度。已经研究了以下参数:-h / D比(从电极到神经节细胞的距离/电极直径):0.5、1和2-返回电极配置:单极(远距离有源返回电极),六边形(6个局部有源返回)电极和准单极(QMP,六边形和远距离返回配置的混合)所有返回电极均设计为主动拉电流。在QMP配置中,分别通过远处和局部返回电极回收了50%的注入电流。电极的直径选择为100?μm,间距为110?μm。动态范围定义为SIROF电极的阈值电流与安全电流注入极限之间的差。结果:随着电极构型从MP到QMP到六边形变化,动态范围系统地减小。对于较大的电极/目标电池距离(h / D为2),此效果更为明显,而对于较小的距离则几乎看不到。这是由于QMP和六边形配置的阈值水平升高,这是由于将刺激电流直接分流到返回电极而造成的。结论:使用诸如十六进制返回之类的多极配置进行电流聚焦具有更多局部刺激的优点,而这种刺激较少发生电串扰。然而,取决于电极的几何形状和与靶细胞的距离,其也具有较高的阈值水平。我们研究了使用远距离返回和本地十六进制返回的混合返回配置是否可以弥补此限制。与纯十六进制配置相比,发现具有50%远距离返回的QMP配置具有较低的阈值并具有较高的动态范围。如果靶细胞非常接近刺激电极(可以用穿透电极实现),则返回配置不会影响阈值水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号