首页> 外文期刊>International Journal of Molecular Sciences >Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss
【24h】

Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss

机译:脊髓单动神经元缺失的小鼠神经毒性模型中的神经肌肉可塑性。

获取原文
           

摘要

Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
机译:尽管进行了相关的研究工作,但肌萎缩性侧索硬化症(ALS)的病因仍然未知,尚无有效的治疗方法。许多作者认为ALS是由网络故障引起的多系统疾病,而不是由运动神经元所致的细胞自主病理学引起。尽管鉴于其特定的脆弱性,神经元损失是ALS的关键标志,但其他细胞群体(包括肌肉和神经胶质细胞)也参与疾病的发作和进展,但要弄清它们的特殊作用和串扰还需要进一步研究。特别地,关于退化电动机系统的塑性变化知之甚少。这些自发的代偿过程无法阻止疾病的进展,但其阐明和可能用作治疗靶标是ALS研究的重要目标。疾病的遗传动物模型代表了验证经过证实的假设或测试潜在疗法的有用工具,而关于ALS病因的新假设或病原机制研究的概念可通过使用相对简单的体内模型来概括其特定方面而受益。疾病,因此避免在实验环境中包含太多混杂因素。在这里,我们使用了由腓肠肌注射霍乱毒素-B saporin引起的脊髓运动神经元耗竭的神经毒性模型,以研究肌肉和脊髓中代偿性变化的可能发生。结果表明,在病变后,骨骼肌萎缩并表现出与ALS患者相似的肌电活动。此外,肌肉纤维形态的变化不同于在ALS模型中观察到的变化,因此表明疾病的某些肌肉效应可能是主要的效应,而不是简单地由神经支配引起的。值得注意的是,我们在存活的运动神经元中发现了塑性变化,可以产生功能性恢复,可能与疾病中发生的代偿性变化相似。这些改变可能至少部分是由谷氨酸能信号传导驱动的,接触存活的运动神经元的星形胶质细胞可能支持这一过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号