首页> 外文期刊>IFAC PapersOnLine >Systematic Hysteresis Compensator Design based on Extended Unparallel Prandtl-Ishlinskii Model for SPM Imaging Rectification * * This work was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under the Grant W911NF-16-1-0572
【24h】

Systematic Hysteresis Compensator Design based on Extended Unparallel Prandtl-Ishlinskii Model for SPM Imaging Rectification * * This work was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under the Grant W911NF-16-1-0572

机译:基于扩展的不平行Prandtl-Ishlinskii模型的系统磁滞补偿器设计,用于SPM成像校正 * * 授予W911NF-16-1-0572的美国陆军研究实验室和美国陆军研究办公室

获取原文
       

摘要

Scanning probe microscopy (SPM) technology plays the irreplaceable role in investigating microano world, which has been bringing tremendous development opportunities to various fields. To enhance maneuverability, SPM can be modified into a nanomanipulation system with its scanning probe as the end-effector. The probe is commonly mounted on smart material based actuators to generate precise motion with nanometer level resolution. However, instinctive hysteretic characteristics ubiquitously exist in smart material actuators, which degrade their arbitrary positioning precision. To effectively represent and further reduce complex hysteretic effects, this paper proposes to utilize the modified Prandtl-Ishlinskii (PI) model: extended unparallel PI (EUPI) model, which possesses advantages such as the flexible modeling capability (compared to the prevalently implemented modified PI models) and the easy-to-use property for construction and identification (compared to the well known Preisach model and the Generalized PI (GPI) model). To effectively reduce complex hysteresis, the EUPI model based compensator (IM UPI compensator) is required to be flexible and precise. To efficiently design such a compensator satisfying stability requirement, this study proposes a systematic approach, including stabilizing gain selection and analytical calculation of boundary gains of the EUPI irreversible component. As a demonstration, satisfactorily precise IM UPI compensator was established according to this systematic design approach and tested through simulations on rectifying Atomic Force Microscopy (AFM, one special SPM) imaging process distorted by complex hysteresis.
机译:扫描探针显微镜(SPM)技术在研究微观/纳米世界中扮演着不可替代的角色,这已为各个领域带来了巨大的发展机会。为了提高可操作性,可以将SPM修改为以扫描探针为末端执行器的纳米处理系统。探头通常安装在基于智能材料的执行器上,以产生纳米级分辨率的精确运动。然而,智能材料致动器普遍存在本能的磁滞特性,这降低了它们的任意定位精度。为了有效地表示并进一步减少复杂的磁滞效应,本文提出利用改进的Prandtl-Ishlinskii(PI)模型:扩展的非并行PI(EUPI)模型,该模型具有诸如灵活的建模能力(与普遍实现的改进的PI相比较)的优点。模型)和易于使用的属性进行构造和识别(与著名的Preisach模型和广义PI(GPI)模型相比)。为了有效减少复杂的磁滞,要求基于EUPI模型的补偿器(IM UPI补偿器)灵活且精确。为了有效地设计满足稳定性要求的补偿器,本研究提出了一种系统的方法,包括稳定增益选择和EUPI不可逆分量的边界增益的解析计算。作为演示,根据此系统设计方法建立了令人满意的精确IM UPI补偿器,并通过对由于复杂磁滞而失真的整流原子力显微镜(AFM,一种特殊的SPM)成像过程进行了仿真测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号