...
首页> 外文期刊>Astronomy and astrophysics >Radiation thermo-chemical models of protoplanetary disks
【24h】

Radiation thermo-chemical models of protoplanetary disks

机译:原行星盘的辐射热化学模型

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Disks around pre-main-sequence stars evolve over time by turbulent viscous spreading. The main contender to explain the strength of the turbulence is the magnetorotational instability model, whose efficiency depends on the disk ionization fraction. Aims. Our aim is to compute self-consistently the chemistry including polycyclic aromatic hydrocarbon (PAH) charge chemistry, the grain charging, and an estimate of an effective value of the turbulence α parameter in order to find observational signatures of disk turbulence. Methods. We introduced PAH and grain charging physics and their interplay with other gas-phase reactions in the physico-chemical code P RO D I M O . Non-ideal magnetohydrodynamics effects such as ohmic and ambipolar diffusion are parametrized to derive an effective value for the turbulent parameter α _(eff). We explored the effects of turbulence heating and line broadening on CO isotopologue submillimeter lines. Results. The spatial distribution of α _(eff)depends on various unconstrained disk parameters such as the magnetic parameter β _(mag)or the cosmic ray density distribution inside the protoplanetary disk s. The inner disk midplane shows the presence of the so-called dead zone where the turbulence is almost inexistent. The disk is heated mostly by thermal accommodation on dust grains in the dead zone, by viscous heating outside the dead zone up to a few hundred astronomical units, and by chemical heating in the outer disk. The CO rotational lines probe the warm molecular disk layers where the turbulence is at its maximum. However, the effect of turbulence on the CO line profiles is minimal and difficult to distinguish from the thermal broadening. Conclusions. Viscous heating of the gas in the disk midplane outside the dead zone is efficient. The determination of α from CO rotational line observations alone is challenging.
机译:上下文。主序前恒星周围的圆盘会随着湍流的粘性扩散而随时间演化。解释湍流强度的主要竞争者是磁旋转不稳定性模型,其效率取决于磁盘电离分数。目的我们的目标是自洽地计算包括多环芳烃(PAH)装料化学,颗粒装料和湍流α参数有效值的估计值的化学性质,以发现圆盘湍流的观测特征。方法。我们在物理化学代码P RO D I M O中介绍了PAH和谷物带电物理及其与其他气相反应的相互作用。通过参数化非理想的磁流体动力学效应,例如欧姆和双极扩散,可以得出湍流参数α_(eff)的有效值。我们探讨了湍流加热和线宽对CO同位素射流亚毫米线的影响。结果。 α_(eff)的空间分布取决于各种不受约束的盘参数,例如磁参数β_(mag)或原行星盘s内的宇宙射线密度分布。内盘中平面显示出几乎不存在湍流的所谓死区。磁盘的加热主要是通过对死区中尘埃的热适应,死区外的粘性加热(多达数百个天文单位)以及外盘中的化学加热来进行的。 CO旋转线探测湍流最大的温暖分子盘层。然而,湍流对CO线轮廓的影响极小,并且难以与热展宽区分开。结论。在死区之外的磁盘中平面中的气体的粘性加热是有效的。仅从CO旋转线观测值确定α是具有挑战性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号