...
首页> 外文期刊>Astronomy and astrophysics >Magnetohydrodynamic waves in braided magnetic fields
【24h】

Magnetohydrodynamic waves in braided magnetic fields

机译:编织磁场中的磁流体动波

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aims . We investigate the propagation of transverse magnetohydrodynamic (MHD) wave fronts through a coronal plasma containing a braided magnetic field. Methods . We performed a series of three dimensional MHD simulations in which a small amplitude, transverse velocity perturbation is introduced into a complex magnetic field. We analysed the deformation of the wave fronts as the perturbation propagates through the braided magnetic structures and explore the nature of Alfvénic wave phase mixing in this regime. We considered the effects of viscous dissipation in a weakly non-ideal plasma and evaluate the effects of field complexity on wave energy dissipation. Results . Spatial gradients in the local Alfvén speed and variations in the length of magnetic field lines ensure that small scales form throughout the propagating wave front due to phase mixing. Additionally, the presence of complex, intricate current sheets associated with the background field locally modifies the polarisation of the wave front. The combination of these two effects enhances the rate of viscous dissipation, particularly in more complex field configurations. Unlike in classical phase mixing configurations, the greater spatial extent of Alfvén speed gradients ensures that wave energy is deposited over a larger cross-section of the magnetic structure. Further, the complexity of the background magnetic field ensures that small gradients in a wave driver can map to large gradients within the coronal plasma. Conclusions . The phase mixing of transverse MHD waves in a complex magnetic field will progress throughout the braided volume. As a result, in a non-ideal regime wave energy will be dissipated over a greater cross-section than in classical phase mixing models. The formation rate of small spatial scales in a propagating wave front is a function of the complexity of the background magnetic field. As such, if the coronal field is sufficiently complex it remains plausible that phase mixing induced wave heating can contribute to maintaining the observed temperatures. Furthermore, the weak compressibility of the transverse wave and the observed phase mixing pattern may provide seismological information about the nature of the background plasma.
机译:目的。我们调查通过包含编织磁场的日冕等离子体横向磁流体动力学(MHD)波前的传播。方法 。我们执行了一系列的三维MHD模拟,其中将小振幅,横向速度扰动引入到复杂磁场中。我们分析了当扰动通过编织的磁性结构传播时波阵面的变形,并探讨了在这种情况下Alfvénic波相混合的性质。我们考虑了弱非理想等离子体中的粘性耗散效应,并评估了场复杂度对波能量耗散的影响。结果。局部Alfvén速度的空间梯度和磁场线长度的变化可确保由于相位混合而在整个传播波前形成小尺度。另外,与背景场相关的复杂,复杂的电流表的存在局部地改变了波前的极化。这两种效果的结合提高了粘性耗散率,尤其是在更复杂的现场配置中。与经典的相位混合配置不同,Alfvén速度梯度的较大空间范围可确保将波能沉积在较大的磁性结构横截面上。此外,背景磁场的复杂性确保了波驱动器中的小梯度可以映射到冠状等离子体内的大梯度。结论。横向MHD波在复杂磁场中的相位混合将在整个编织体积中进行。结果,与经典的相位混合模型相比,在非理想状态下,波能将在更大的横截面上被耗散。传播波阵面中小空间尺度的形成速率是背景磁场复杂度的函数。这样,如果日冕场足够复杂,则仍然有可能使相混合引起的波加热可以有助于维持观察到的温度。此外,横波的弱可压缩性和观察到的相混合模式可能会提供有关本底等离子体性质的地震信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号