首页> 外文期刊>Astronomy and astrophysics >Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections
【24h】

Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections

机译:太阳风密度对正向和反向日冕物质抛射演化的影响

获取原文
       

摘要

Context. The evolution of magnetised coronal mass ejections (CMEs) and their interaction with the background solar wind leading to deflection, deformation, and erosion is still largely unclear as there is very little observational data available. Even so, this evolution is very important for the geo-effectiveness of CMEs. Aims. We investigate the evolution of both normal and inverse CMEs ejected at different initial velocities, and observe the effect of the background wind density and their magnetic polarity on their evolution up to 1 AU. Methods. We performed 2.5D (axisymmetric) simulations by solving the magnetohydrodynamic equations on a radially stretched grid, employing a block-based adaptive mesh refinement scheme based on a density threshold to achieve high resolution following the evolution of the magnetic clouds and the leading bow shocks. All the simulations discussed in the present paper were performed using the same initial grid and numerical methods. Results. The polarity of the internal magnetic field of the CME has a substantial effect on its propagation velocity and on its deformation and erosion during its evolution towards Earth. We quantified the effects of the polarity of the internal magnetic field of the CMEs and of the density of the background solar wind on the arrival times of the shock front and the magnetic cloud. We determined the positions and propagation velocities of the magnetic clouds and thus also the stand-off distance of the leading shock fronts (i.e. the thickness of the magnetic sheath region) and the deformation and erosion of the magnetic clouds during their evolution from the Sun to the Earth. Inverse CMEs were found to be faster than normal CMEs ejected in the same initial conditions, but with smaller stand-off distances. They also have a higher magnetic cloud length, opening angle, and mass. Synthetic satellite time series showed that the shock magnitude is not affected by the polarity of the CME. However, the density peak of the magnetic cloud is dependent on the polarity and, in case of inverse CMEs, also on the background wind density. The magnitude of the z-component of the magnetic field was not influenced by either the polarity or the wind density.
机译:上下文。由于几乎没有观测数据,磁化日冕物质抛射(CME)的演化及其与导致偏转,变形和侵蚀的背景太阳风之间的相互作用仍然不清楚。即便如此,这种演变对于CME的地理有效性也非常重要。目的我们研究了以不同初始速度射出的正向和反向CMEs的演化,并观察了背景风密度及其磁极性对其直至1 AU的演化的影响。方法。我们通过求解径向拉伸网格上的磁流体动力学方程,通过基于密度阈值的基于块的自适应网格细化方案来实现2.5D(轴对称)仿真,从而随着磁云和前弓冲击的发展实现高分辨率。本文讨论的所有模拟都是使用相同的初始网格和数值方法进行的。结果。 CME内部磁场的极性对其传播速度以及其向地球演化的过程中的变形和腐蚀具有重大影响。我们量化了CME内部磁场的极性和背景太阳风的密度对激波锋和磁云到达时间的影响。我们确定了磁云的位置和传播速度,从而确定了领先的激波锋的间隔距离(即磁鞘区域的厚度)以及磁云从太阳到太阳演化过程中的变形和腐蚀。地球。发现在相同的初始条件下,反向CME比普通CME快,但相距较小。它们还具有较高的磁云长度,张角和质量。合成卫星时间序列表明,震级不受CME极性的影响。但是,磁云的密度峰值取决于极性,在逆CME的情况下,还取决于背景风的密度。磁场的z分量的大小不受极性或风密度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号