...
首页> 外文期刊>Astronomy and astrophysics >Spectroscopic evolution of massive stars on the main sequence
【24h】

Spectroscopic evolution of massive stars on the main sequence

机译:主序列上大质量恒星的光谱演化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The evolution of massive stars depends on several parameters, and the relation between different morphological types is not fully constrained. Aims. We aim to provide an observational view of evolutionary models in the Hertzsprung–Russell diagram, on the main sequence. This view should help compare observations and model predictions. Methods. We first computed evolutionary models with the code STAREVOL for initial masses between 15 and 100 M _(⊙) . We subsequently calculated atmosphere models at specific points along the evolutionary tracks, using the code CMFGEN. Synthetic spectra obtained in this way were classified as if they were observational data: we assigned them a spectral type and a luminosity class. We tested our spectral classification by comparison to observed spectra of various stars with different spectral types. We also compared our results with empirical data of a large number of OB stars. Results. We obtain spectroscopic sequences along evolutionary tracks. In our computations, the earliest O stars (O2-3.5) appear only above ~ 50 M _(⊙) . For later spectral types, a similar mass limit exists, but is lower. A luminosity class V does not correspond to the entire main sequence. This only holds for the 15 M _(⊙) track. As mass increases, a larger portion of the main sequence is spent in luminosity class III. Above 50 M _(⊙) , supergiants appear before the end of core-hydrogen burning. Dwarf stars (luminosity class V) do not occur on the zero-age main sequence above 80 M _(⊙) . Consequently, the distribution of luminosity class V in the HR diagram is not a diagnostic of the length of the main sequence (above 15 M _(⊙) ) and cannot be used to constrain the size of the convective core. The distribution of dwarfs and giants in the HR diagram that results from our calculations agrees well with the location of stars analyzed by means of quantitative spectroscopy. For supergiants, there is a slight discrepancy in the sense that luminosity class I is observed slightly earlier (i.e., at higher T _(eff) ) than our predictions. This is mainly due to wind densities that affect the luminosity class diagnostic lines. We predict an upper mass limit for dwarf stars ( ~ 60 M _(⊙) ) that is found consistent with the rarity of O2V stars in the Galaxy. Stars with WNh spectral type are not predicted by our models. Stronger winds are required to produce the characteristic emission lines of these objects.
机译:上下文。大质量恒星的演化取决于几个参数,并且不同形态类型之间的关系没有得到完全约束。目的我们的目的是在主要序列上以Hertzsprung-Russell图的形式提供进化模型的观察视图。该视图应有助于比较观察结果和模型预测。方法。我们首先使用代码STAREVOL计算了初始质量在15到100 M _(⊙)之间的演化模型。随后,我们使用代码CMFGEN计算了沿演化轨迹特定点的大气模型。以这种方式获得的合成光谱被归类为观测数据:我们为它们指定了光谱类型和光度等级。通过与具有不同光谱类型的各种恒星的观测光谱进行比较,我们测试了光谱分类。我们还将我们的结果与大量OB星的经验数据进行了比较。结果。我们沿着进化轨道获得光谱序列。在我们的计算中,最早的O星(O2-3.5)仅出现在〜50 M _(⊙)以上。对于后来的光谱类型,存在相似的质量限制,但较低。亮度等级V不对应于整个主序列。这仅适用于15 M _(⊙)轨道。随着质量的增加,主序列的大部分都花在了III级发光度上。高于50 M _(⊙),超级巨人出现在核心氢燃烧结束之前。在80 M _(⊙)以上的零年龄主序列上不出现矮星(亮度等级V)。因此,HR图中的亮度等级V的分布不是主序列长度的诊断(大于15 M _(⊙)),并且不能用于限制对流核心的大小。由我们的计算得出的HR图中的矮人和巨人的分布与通过定量光谱法分析的恒星的位置非常吻合。对于超级巨人,在某种意义上存在一点差异,即我观察到的亮度等级I比我们的预测要早一些(即,在更高的T _(eff))。这主要是由于风密度影响了亮度等级诊断线。我们预测矮星的质量上限(〜60 M _(⊙))与银河系中O2V恒星的稀有性一致。我们的模型无法预测WNh光谱类型的恒星。需要强风才能产生这些物体的特征发射线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号