...
首页> 外文期刊>Astronomy and astrophysics >What drives galactic magnetism?
【24h】

What drives galactic magnetism?

机译:是什么驱动银河系磁力?

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aims. Magnetic fields are important ingredients of the interstellar medium. They are suspected to be maintained by dynamo processes related to star-formation activity, properties of the interstellar medium and global features of galaxies. We aim to use statistical analysis of a large number of various galaxies to probe, model, and understand relations between different galaxy properties and magnetic fields. Methods. We have compiled a sample of 55 galaxies including low-mass dwarf and Magellanic-types, normal spirals and several massive starbursts, and applied principal component analysis (PCA) and regression methods to assess the impact of various galaxy properties on the observed magnetic fields. Results. According to PCA the global galaxy parameters (like H? i , H _(2) , and dynamical mass, star formation rate (SFR), near-infrared luminosity, size, and rotational velocity) are all mutually correlated and can be reduced to a single principal component. Further PCA performed for global and intensive (not size related) properties of galaxies (such as gas density, and surface density of the star formation rate, SSFR), indicates that magnetic field strength B is connected mainly to the intensive parameters, while the global parameters have only weak relationships with B . We find that the tightest relationship of B is with SSFR, which is described by a power-law with an index of 0.33 ± 0.03 . The relation is observed for galaxies with the global SFR spread over more than four orders of magnitude. Only the radio faintest dwarf galaxies deviate from this relation probably due to the inverse Compton losses of relativistic electrons or long turbulence injection timescales. The observed weaker associations of B with galaxy dynamical mass and the rotational velocity we interpret as indirect ones, resulting from the observed connection of the global SFR with the available total H _(2) mass in galaxies. Using our sample we constructed a diagram of B across the Hubble sequence which reveals that high values of B are not restricted by the Hubble type and even dwarf (starbursting) galaxies can produce strong magnetic fields. However, weaker fields appear exclusively in later Hubble types and B as low as about 5 μ G is not seen among typical spirals. Conclusions. The processes of generation of magnetic field in the dwarf and Magellanic-type galaxies are similar to those in the massive spirals and starbursts and are mainly coupled to local star-formation activity involving the small-scale dynamo mechanism.
机译:目的磁场是星际介质的重要成分。怀疑它们是由与恒星形成活动,星际介质性质和星系整体特征有关的发电机过程维持的。我们旨在使用对大量不同星系的统计分析来探测,建模和理解不同星系特性与磁场之间的关系。方法。我们收集了55个星系的样本,包括低质量矮星系和麦哲伦星系,正常旋涡和数个巨大的星爆,并应用主成分分析(PCA)和回归方法来评估各种星系特性对观测磁场的影响。结果。根据PCA,全局星系参数(例如H?i,H_(2)以及动态质量,恒星形成率(SFR),近红外光度,大小和旋转速度)都相互关联,可以简化为单个主要成分。对星系的整体和强度(与大小无关)性质(例如气体密度和恒星形成率的表面密度SSFR)执行的进一步PCA表明,磁场强度B主要与强度参数有关,而整体强度参数与B仅具有弱关系。我们发现B的最紧密关系与SSFR密切相关,SSFR由幂指数描述,其指数为0.33±0.03。对于具有整体SFR分布超过四个数量级的星系,可以观察到这种关系。只有射电最弱的矮星系才可能偏离这一关系,这可能是由于相对论电子的康普顿逆损失或长湍流注入时标所致。观测到的B与星系动力学质量和旋转速度之间的较弱关联,我们认为是间接的,这是由于观测到的整体SFR与星系中可用的总H _(2)质量之间的联系所致。使用我们的样本,我们在哈勃序列上绘制了一个B图,该图表明B的高值不受哈勃类型的限制,即使是矮星系(星爆)也可以产生强磁场。但是,较弱的场仅出现在后来的哈勃类型中,而在典型的螺旋中看不到低至约5μG的B。结论。矮星系和麦哲伦星系中的磁场产生过程与大型旋涡和星爆中的磁场相似,并且主要与涉及小型发电机机制的局部恒星形成活动有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号