...
首页> 外文期刊>Astronomy and astrophysics >Contribution of mode-coupling and phase-mixing of Alfvén waves to coronal heating
【24h】

Contribution of mode-coupling and phase-mixing of Alfvén waves to coronal heating

机译:Alfvén波的模式耦合和相混合对日冕加热的贡献

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Phase-mixing of Alfvén waves in the solar corona has been identified as one possible candidate to explain coronal heating. While this scenario is supported by observations of ubiquitous oscillations in the corona carrying sufficient wave energy and by theoretical models that have described the concentration of energy in small-scale structures, it is still unclear whether this wave energy can be converted into thermal energy in order to maintain the million-degree hot solar corona. Aims. The aim of this work is to assess how much energy can be converted into thermal energy by a phase-mixing process triggered by the propagation of Alfvénic waves in a cylindric coronal structure, such as a coronal loop, and to estimate the impact of this conversion on the coronal heating and thermal structure of the solar corona. Methods. To this end, we ran 3D MHD simulations of a magnetised cylinder where the Alfvén speed varies through a boundary shell, and a footpoint driver is set to trigger kink modes that mode couple to torsional Alfvén modes in the boundary shell. These Alfvén waves are expected to phase-mix, and the system allows us to study the subsequent thermal energy deposition. We ran a reference simulation to explain the main process and then we varied the simulation parameters, such as the size of the boundary shell, its structure, and the persistence of the driver. Results. When we take high values of magnetic resistivity and strong footpoint drivers into consideration, we find that i) phase-mixing leads to a temperature increase of the order of 10~(5) K or less, depending on the structure of the boundary shell; ii) this energy is able to balance the radiative losses only in the localised region involved in the heating; and iii) we can determine the influence of the boundary layer and the persistence of the driver on the thermal structure of the system. Conclusions. Our conclusion is that as a result of the extreme physical parameters we adopted and the moderate impact on the heating of the system, it is unlikely that phase-mixing can contribute on a global scale to the heating of the solar corona.
机译:上下文。太阳日冕中Alfvén波的相混合已被认为是解释日冕加热的一种可能的候选物。尽管这种现象得到了携带足够波能的电晕中普遍存在的振荡的观察以及描述了小规模结构中能量集中的理论模型的支持,但仍不清楚该波能是否可以按顺序转换为热能维持百万度的高温日冕。目的这项工作的目的是评估通过Alfvénic波在圆柱形日冕结构(例如日冕环)中传播所引发的相混合过程,可以将多少能量转换为热能,并评估这种转换的影响日冕的日冕加热和热结构方法。为此,我们对磁化圆柱体进行了3D MHD仿真,其中Alfvén速度通过边界壳变化,并且设置了脚点驱动器以触发扭结模式,该模式与边界壳中的扭转Alfvén模式耦合。这些Alfvén波有望发生相混合,并且该系统使我们能够研究随后的热能沉积。我们进行了参考仿真以解释主要过程,然后我们更改了仿真参数,例如边界壳的大小,其结构和驱动程序的持久性。结果。当我们考虑高电阻率和强大的脚点驱动器时,我们会发现:i)相混合导致温度升高幅度在10〜(5)K或更小,这取决于边界壳的结构; ii)该能量仅在加热所涉及的局部区域才能够平衡辐射损失; iii)我们可以确定边界层的影响和驱动器的持久性对系统热结构的影响。结论。我们的结论是,由于我们采用了极端的物理参数以及对系统加热的适度影响,相混合不太可能在全球范围内促进太阳日冕的加热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号