首页> 外文期刊>Astronomy and astrophysics >XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters - Systematic temperature differences and cosmological impact
【24h】

XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters - Systematic temperature differences and cosmological impact

机译:使用HIFLUGCS星系星团进行XMM-Newton和Chandra交叉校准-系统温差和宇宙学影响

获取原文
           

摘要

Context. Robust X-ray temperature measurements of the intracluster medium (ICM) of galaxy clusters require an accurate energy-dependent effective area calibration. Since the hot gas X-ray emission of galaxy clusters does not vary on relevant timescales, they are excellent cross-calibration targets. Moreover, cosmological constraints from clusters rely on accurate gravitational mass estimates, which in X-rays strongly depend on cluster gas temperature measurements. Therefore, systematic calibration differences may result in biased, instrument-dependent cosmological constraints. This is of special interest in light of the tension between the Planck results of the primary temperature anisotropies of the cosmic microwave background (CMB) and Sunyaev-Zel’dovich-plus-X-ray cluster-count analyses. Aims. We quantify in detail the systematics and uncertainties of the cross-calibration of the effective area between five X-ray instruments, EPIC-MOS1/MOS2/PN onboard XMM-Newton and ACIS-I/S onboard Chandra, and the influence on temperature measurements. Furthermore, we assess the impact of the cross-calibration uncertainties on cosmology. Methods. Using the HIFLUGCS sample, consisting of the 64 X-ray brightest galaxy clusters, we constrain the ICM temperatures through spectral fitting in the same, mostly isothermal regions and compare the different instruments. We use the stacked residual ratio method to evaluate the cross-calibration uncertainties between the instruments as a function of energy. Our work is an extension to a previous one using X-ray clusters by the International Astronomical Consortium for High Energy Calibration (IACHEC) and is carried out in the context of IACHEC. Results. Performing spectral fitting in the full energy band, (0.7?7) keV, as is typical of the analysis of cluster spectra, we find that best-fit temperatures determined with XMM-Newton/EPIC are significantly lower than Chandra/ACIS temperatures. This confirms the previous IACHEC results obtained with older calibrations with high precision. The difference increases with temperature, and we quantify this dependence with a fitting formula. For instance, at a cluster temperature of 10 keV, EPIC temperatures are on average 23% lower than ACIS temperatures. We also find systematic differences between the three XMM-Newton/EPIC instruments, with the PN detector typically estimating the lowest temperatures. Testing the cross-calibration of the energy-dependence of the effective areas in the soft and hard energy bands, (0.7?2) keV and (2?7) keV, respectively, we confirm the previously indicated relatively good agreement between all instruments in the hard and the systematic differences in the soft band. We provide scaling relations to convert between the different instruments based on the effective area, gas temperature, and hydrostatic mass. We demonstrate that effects like multitemperature structure and different relative sensitivities of the instruments at certain energy bands cannot explain the observed differences. We conclude that using XMM-Newton/EPIC instead of Chandra/ACIS to derive full energy band temperature profiles for cluster mass determination results in an 8% shift toward lower ΩM values and <1% change of σ8 values in a cosmological analysis of a complete sample of galaxy clusters. Such a shift alone is insufficient to significantly alleviate the tension between Planck CMB primary anisotropies and Sunyaev-Zel’dovich-plus-XMM-Newton cosmological constraints.
机译:上下文。对星系团簇内介质(ICM)进行可靠的X射线温度测量需要精确的能量相关有效面积校准。由于星系团的热气X射线发射在相关时间尺度上没有变化,因此它们是极好的交叉校准目标。此外,来自星团的宇宙学约束依赖于精确的引力质量估计,这在X射线中强烈依赖于星团气体温度的测量。因此,系统的校准差异可能会导致有偏差的,依赖仪器的宇宙学约束。鉴于宇宙微波背景(CMB)的主要温度各向异性的普朗克结果与Sunyaev-Zel’dovich加上X射线聚类计数分析之间的张力,这是特别有趣的。目的我们详细量化了XMM-Newton板载的EPIC-MOS1 / MOS2 / PN和Chandra板载的ACIS-I / S等五种X射线仪器之间有效区域的交叉校准的系统性和不确定性,以及对温度测量的影响。此外,我们评估了交叉校准不确定性对宇宙学的影响。方法。使用由64个X射线最亮的银河星团组成的HIFLUGCS样本,我们通过光谱拟合在相同的区域(主要是等温区域)限制了ICM温度,并比较了不同的仪器。我们使用堆积残差比方法评估仪器之间作为能量函数的交叉校准不确定性。我们的工作是对国际高能标定天文学联合会(IACHEC)使用X射线簇的先前工作的扩展,并且是在IACHEC的背景下进行的。结果。在典型的簇谱分析中,在全能带(0.7?7)keV中进行光谱拟合,我们发现XMM-Newton / EPIC确定的最佳拟合温度明显低于Chandra / ACIS温度。这证实了以前通过高精度的旧校准获得的IACHEC结果。差异随温度增加而增加,我们使用拟合公式来量化这种依赖性。例如,在集群温度为10 keV时,EPIC温度平均比ACIS温度低23%。我们还发现三种XMM-Newton / EPIC仪器之间的系统差异,其中PN检测器通常估算最低温度。通过分别测试软能带和硬能带(0.7?2)keV和(2?7)keV中有效区域的能量相关性的交叉校准,我们确认了之前指出的所有仪器之间的相对较好的一致性。软带中的硬性和系统性差异。我们提供比例关系,以根据有效面积,气​​体温度和静水质量在不同的仪器之间进行转换。我们证明了像多温度结构和仪器在某些能带上的不同相对灵敏度之类的影响无法解释观察到的差异。我们得出的结论是,使用XMM-Newton / EPIC代替Chandra / ACIS得出用于确定团簇质量的完整能带温度曲线会导致向更低的ΩM值偏移8 %,并且在宇宙学中σ8值的变化<1 %完整的星系团样本分析。光靠这样的转变还不足以显着缓解普朗克CMB主各向异性和Sunyaev-Zel’dovich加上XMM-Newton宇宙学约束之间的紧张关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号