首页> 外文期刊>Astronomy and astrophysics >Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion
【24h】

Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion

机译:受双极性扩散影响的原行星盘外部区域的尘埃沉降和环

获取原文
           

摘要

Context . Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes in discs, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into large scale structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. Moreover, the low velocity dispersion observed in CO and strong sedimentation of millimetre dust measured in T-Tauri discs are in contradiction with predictions based on ideal MRI turbulence. Aims . In this paper, we study the effects of non-ideal MHD and magnetized winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (?1 AU). Methods . To compute the dust and gas motions, we performed numerical MHD simulations in the stratified shearing box, using a modified version of the PLUTO code. We explored different grain sizes from micrometre to few centimetres and different disc vertical magnetizations with plasma beta ranging from 10~(3)to 10~(5). Results . Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ?0.4 AU at R = 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within the pressure maxima (or zonal flows) induced by ambipolar diffusion, leading to the formation of dust rings. For micrometre grains and strong magnetization, we find that the dust layer has a size comparable to the disc heightscale H . In this regime, dust settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows. Conclusions . Our results suggest that non-ideal MHD effects and MHD winds associated with zonal flows play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to effective accretion efficiency α ? 10~(?3)–10~(?1), non-ideal MHD models are also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates.
机译:语境。磁流体动力(MHD)湍流在原行星盘的尘埃动力学中起着至关重要的作用。它影响行星的形成,垂直沉降,并且是ALMA和SPHERE最近拍摄的大规模轴对称结构(例如环)的可能来源之一。在磁盘的各种MHD过程中,磁旋转不稳定性(MRI)引起了人们的特别兴趣,因为它提供了湍流的来源,并有可能将流体组织成大规模结构。但是,光盘的弱电离作用会阻止MRI在超过1 AU时被激发。此外,在CO中观察到的低速度弥散和在T-Tauri盘中测得的毫米波尘埃的强沉降与基于理想MRI湍流的预测相矛盾。目的。在本文中,我们研究了非理想的MHD和磁化风对尘粒动力学和沉降的影响。我们认为弱电离的等离子体会受到双极扩散的影响,从而表征了磁盘的外部区域(?1 AU)。方法 。为了计算粉尘和气体运动,我们使用PLUTO代码的修改版在分层剪切框中执行了数值MHD模拟。我们探索了从微米到几厘米的不同晶粒尺寸,以及不同的圆盘垂直磁化强度,其等离子体β范围为10〜(3)至10〜(5)。结果。我们的模拟表明,毫米-厘米的尘埃垂直地包含在一个非常薄的层中,在R = 30 AU时典型的高度比例为±0.4 AU,与最近的ALMA观测结果兼容。在水平方向上,晶粒被捕获在双极性扩散引起的最大压力(或地带流量)之内,从而形成了尘埃环。对于微米级颗粒和强磁化强度,我们发现灰尘层的大小可与光盘高度标度H相媲美。在这种情况下,尘埃沉降不能用简单的一维扩散理论来解释,而是由MHD风和纬向气流引起的大规模二维环流造成的。结论。我们的结果表明,非理想的MHD效应和与纬向气流相关的MHD风在塑造原行星盘中尘埃的径向和垂直分布方面起着重要作用。导致有效的吸积效率α? 10〜(?3)–10〜(?1),非理想的MHD模型也是以相对较高的增生率来调和在圆盘中测得的低湍流活动的有前途的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号