首页> 外文期刊>Astronomy and astrophysics >Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth’s thermospheric evolution
【24h】

Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth’s thermospheric evolution

机译:地面行星的高层大气:二氧化碳冷却和地球热圈演化

获取原文
           

摘要

Context. The thermal and chemical structures of the upper atmospheres of planets crucially influence losses to space and must be understood to constrain the effects of losses on atmospheric evolution. Aims. We develop a 1D first-principles hydrodynamic atmosphere model that calculates atmospheric thermal and chemical structures for arbitrary planetary parameters, chemical compositions, and stellar inputs. We apply the model to study the reaction of the Earth’s upper atmosphere to large changes in the CO_(2)abundance and to changes in the input solar XUV field due to the Sun’s activity evolution from 3 Gyr in the past to 2.5 Gyr in the future. Methods. For the thermal atmosphere structure, we considered heating from the absorption of stellar X-ray, UV, and IR radiation, heating from exothermic chemical reactions, electron heating from collisions with non-thermal photoelectrons, Joule heating, cooling from IR emission by several species, thermal conduction, and energy exchanges between the neutral, ion, and electron gases. For the chemical structure, we considered ~500 chemical reactions, including 56 photoreactions, eddy and molecular diffusion, and advection. In addition, we calculated the atmospheric structure by solving the hydrodynamic equations. To solve the equations in our model, we developed the Kompot code and have provided detailed descriptions of the numerical methods used in the appendices. Results. We verify our model by calculating the structures of the upper atmospheres of the modern Earth and Venus. By varying the CO_(2)abundances at the lower boundary (65 km) of our Earth model, we show that the atmospheric thermal structure is significantly altered. Increasing the CO_(2)abundances leads to massive reduction in thermospheric temperature, contraction of the atmosphere, and reductions in the ion densities indicating that CO_(2)can significantly influence atmospheric erosion. Our models for the evolution of the Earth’s upper atmosphere indicate that the thermospheric structure has not changed significantly in the last 2 Gyr and is unlikely to change signficantly in the next few Gyr. The largest changes that we see take place between 3 and 2 Gyr ago, with even larger changes expected at even earlier times.
机译:上下文。行星高层大气的热和化学结构对空间损失具有至关重要的影响,必须理解为限制损失对大气演化的影响。目的我们开发了一维第一性原理的流体动力学大气模型,该模型计算任意行星参数,化学成分和恒星输入的大气热和化学结构。我们应用该模型研究地球上层大气对CO_(2)丰度的大变化以及由于太阳的活动从过去的3 Gyr演变为将来的2.5 Gyr而导致的输入太阳XUV场的变化的反应。方法。对于热大气结构,我们考虑了吸收恒星X射线,紫外线和IR辐射产生的热量,放热化学反应产生的热量,与非热光电子碰撞产生的电子热量,焦耳热,几种物种产生的IR辐射产生的冷却,热传导以及中性,离子和电子气体之间的能量交换。对于化学结构,我们考虑了约500个化学反应,包括56个光反应,涡旋和分子扩散以及对流。另外,我们通过求解流体动力学方程来计算大气结构。为了解决模型中的方程,我们开发了Kompot代码,并提供了附录中使用的数值方法的详细说明。结果。我们通过计算现代地球和金星的高层大气的结构来验证我们的模型。通过改变地球模型下边界(65 km)的CO_(2)丰度,我们发现大气热结构发生了显着变化。 CO_(2)丰度的增加会导致热层温度的大幅降低,大气的收缩以及离子密度的降低,表明CO_(2)可以显着影响大气侵蚀。我们对地球高层大气演化的模型表明,热球结构在最近的2个Gyr中并没有显着变化,并且在接下来的几个Gyr中不太可能发生重大变化。我们看到的最大变化发生在Gyr的3到2年前,预计在更早的时间会有更大的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号