...
首页> 外文期刊>Astronomy and astrophysics >Spatial variation of the cooling lines in the reflection nebula NGC?7023
【24h】

Spatial variation of the cooling lines in the reflection nebula NGC?7023

机译:反射星云NGC?7023中冷却线的空间变化

获取原文
           

摘要

Context. The north-west photo-dissociation region (PDR) in the reflection nebula NGC?7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great opportunity to study the link between the morphology and energetics of these regions. Aims. We study the spatial variation of the far-infrared fine-structure lines of [C?ii] (158 μm) and [O?i] (63 and 145 μm). These lines trace the local gas conditions across the PDR. We also compare their emission with molecular tracers including rotational and ro-vibrational lines of H2 and high-rotational lines of CO. Methods. We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110″ × 110″ with an angular resolution that varies from 4′′ to 11′′. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 μm images that trace the emission of polycyclic aromatic hydrocarbons. We used a PDR code to model the [O?i]145 μm line and infer the physical conditions in the region. Results. The [C?ii] (158 μm) and [O?i] (63 and 145 μm) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O?i]63 μm (>30%), H2 contributes significantly in the PDR (~35%), as does [C?ii]158 μm outside the PDR (30%). Other species contribute little to the cooling ([O?i]145 μm 9%, and CO 4%). Enhanced emission of these far-infrared atomic lines trace the presence of condensations, where high-excitation CO rotational lines and dust emission in the submillimetre are detected as well. The [O?i] maps resolve these condensations into two structures and show that the peak of [O?i] is slightly displaced from the molecular H2 emission. The size of these structures is about 8″ (0.015 pc) and in surface cover about 9% of the PDR emission. We have tested whether the density profile and peak densities that were derived in previous studies to model the dust and molecular emission can predict the [O?i]145 μm emission. We find that the model with a peak density of 106 cm-3, and 2 × 104?5 cm-3 in the oxygen emitting region predicts an [O?i]145 μm line that is only 30% lower than the observed emission. Finally, we did not detect emission from [N?ii]122 μm, suggesting that the cavity is mostly filled with non-ionised gas.
机译:上下文。反射星云NGC?7023中的西北光解离区(PDR)显示复杂的结构。可以通过主要冷却线的排放来追踪云层边缘的丝状凝结,这为研究这些区域的形态与能量学之间的联系提供了绝佳的机会。目的我们研究了[C?ii](158μm)和[O?i](63和145μm)远红外精细结构线的空间变化。这些线跟踪整个PDR的当地天然气状况。我们还将它们的发射与分子示踪剂(包括H2的旋转和旋转振动线以及CO的高旋转线)进行比较。方法。我们使用了Herschel / PACS仪器的观测结果来绘制这些精细结构线的空间分布。观察到的区域覆盖了约110“×110”的正方形区域,其角分辨率从4''到11''不等。我们将这种排放与H2线的地面观测和Spitzer观测,CO谱的Herschel / SPIRE观测以及追踪多环芳烃排放的Spitzer / IRAC 3.6μm图像进行了比较。我们使用PDR代码为[O?i] 145μm线建模并推断该区域的物理条件。结果。 [C?ii](158μm)和[O?i](63和145μm)谱线来自PDR所在的暖云表面,气体温暖,从而冷却了该区域。我们发现,尽管在观察区域内对冷却预算的相对贡献主要由[O?i] 63μm(> 30%)决定,但H2在PDR中的贡献显着(〜35%),与[C?ii]一样。 PDR以外158μm(30%)。其他物质对冷却的贡献很小([145] m为9%,CO为4%)。这些远红外原子线的发射增强表明存在缩合,在那里还检测到了高激发的CO旋转线和亚毫米级的粉尘发射。 [O 2]图将这些缩合分解为两个结构,表明[O 2]的峰与分子H 2的发射略有偏离。这些结构的尺寸约为8英寸(0.015 pc),在表面覆盖层中约占PDR发射的9%。我们已经测试了先前研究中模拟粉尘和分子发射的密度分布和峰密度是否可以预测[O?i] 145μm发射。我们发现,模型的峰值密度为106 cm-3,在氧气发射区域的密度为2×104?5 cm-3,预测的[O?i] 145μm谱线仅比观察到的发射低30%。最后,我们没有检测到[N?ii] 122μm的发射,这表明腔体中大部分充满了非电离气体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号