...
首页> 外文期刊>Astronomy and astrophysics >MHD simulations of accretion onto a dipolar magnetosphere - II. Magnetospheric ejections and stellar spin-down
【24h】

MHD simulations of accretion onto a dipolar magnetosphere - II. Magnetospheric ejections and stellar spin-down

机译:对偶极磁层吸积的MHD模拟-II。磁层喷射和恒星旋转

获取原文
           

摘要

Aims. This paper examines the outflows associated with the interaction of a stellar magnetosphere with an accretion disk. In particular, we investigate the magnetospheric ejections?(MEs) due to the expansion and reconnection of the field lines connecting the star with the disk. Our aim is to study the dynamical properties of the outflows and evaluate their impact on the angular momentum evolution of young protostars. Methods. Our models are based on axisymmetric time-dependent magnetohydrodynamic simulations of the interaction of the dipolar magnetosphere of a rotating protostar with a viscous and resistive disk, using alpha prescriptions for the transport coefficients. Our simulations are designed to model the accretion process and the formation of accretion funnels, the periodic inflation/reconnection of the magnetosphere and the associated MEs, and the stellar wind. Results. Similar to a magnetic slingshot, MEs can be powered by the rotation of both the disk and the star so that they can efficiently remove angular momentum from both. Depending on the accretion rate, MEs can extract a relevant fraction of the accretion torque and, together with a weak but non-negligible stellar wind torque, can balance the spin-up due to accretion. When the disk truncation approaches the corotation radius, the system enters a “propeller” regime, where the torques exerted by the disk and the MEs can even balance the spin-up due to the stellar contraction. Conclusions. Magnetospheric ejections can play an important role in the stellar spin evolution. Their spin-down efficiency can be compared to other scenarios, such as the Ghosh & Lamb, X-wind, or stellar wind models. Nevertheless, for all scenarios, an efficient spin-down torque requires a rather strong dipolar component, which has seldom been observed in classical T?Tauri stars. A better analysis of the torques acting on the protostar must consider non-axisymmetric and multipolar magnetic components consistent with observations.
机译:目的本文研究了与恒星磁层与吸积盘相互作用有关的流出。特别是,我们研究了由于连接恒星和磁盘的磁力线的膨胀和重新连接而引起的磁层喷射?我们的目的是研究流出物的动力学特性,并评估其对年轻原恒星角动量演变的影响。方法。我们的模型基于旋转对称星的偶极磁层与粘性和阻性盘相互作用的轴对称时间相关磁流体动力学模拟,其中使用了传输系数的α处方。我们的模拟旨在对吸积过程和吸积漏斗的形成,磁层和相关磁极的周期性膨胀/重新连接以及恒星风进行建模。结果。类似于磁弹弓,ME可以通过磁盘和恒星的旋转来提供动力,因此它们可以有效地消除两者的角动量。取决于吸积率,ME可以提取一定比例的吸积扭矩,并且与微弱但不可忽略的恒星风扭矩一起,可以平衡由于吸积引起的旋转。当圆盘截断接近同心圆半径时,系统进入“螺旋桨”状态,在该状态下,由于恒星收缩,圆盘和ME施加的扭矩甚至可以平衡旋转。结论。磁层喷射可在恒星自旋演化中发挥重要作用。它们的降速效率可以与其他情况(例如Ghosh&Lamb,X-wind或恒星风模型)进行比较。然而,在所有情况下,有效的降速扭矩都需要相当强的偶极分量,这在经典的T?Tauri星中很少见到。更好地分析作用在原恒星上的转矩,必须考虑与观测结果相符的非轴对称和多极磁性分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号