...
首页> 外文期刊>Astronomy and astrophysics >Radial molecular abundances and gas cooling in starless cores
【24h】

Radial molecular abundances and gas cooling in starless cores

机译:无星核中的径向分子丰度和气体冷却

获取原文
           

摘要

Aims. We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Attention is also given to the time-evolution of both the molecular abundances and the gas temperature. Methods. A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The calculation is repeated in an iterative process yielding molecular abundances consistent with the gas temperature. Line emission profiles for selected substances are calculated using simulated abundance profiles. Results. The gas temperature is a function of time; the gas heats up as the core grows older because the cooling molecules are depleted onto grain surfaces. The change in gas temperature associated with depletion is of the order of 1?K. The contributions of the various cooling molecules to the total cooling power change with time, but the main cooling molecule at all times, in the range of environments studied here, is CO. Radial chemical abundance profiles are non-trivial: different species present varying degrees of depletion and in some cases inward-increasing abundances profiles, even at t?>?105?years. Line emission simulations indicate that cores of different ages can present significantly different line emission profiles, depending on the tracer species considered. Conclusions. Chemical abundances and the associated line cooling power change as a function of time. Most chemical species are depleted onto grain surfaces at densities exceeding ?~105?cm-3. Notable exceptions are NH3 and N2H?+?; the latter is largely undepleted even at nH?~?106?cm-3. On the other hand, chemical abundances are not significantly developed in regions of low gas density even at t?~?105?years, revealed by inward-increasing abundance gradients. Except in high-density regions where the gas-dust coupling is significant, the gas temperature can be significantly different from the dust temperature. This may have implications on core stability. Owing to the potentially large changes in line emission profiles induced by the evolving chemical abundance gradients, our models support the idea that observed line emission profiles can, to some extent, be used to constrain the ages of starless cores.
机译:目的我们的目标是通过结合化学和辐射传递模型来模拟冷和重屏蔽无星核中分子丰度和气体温度的径向分布。还应注意分子丰度和气体温度的时间演化。方法。确定改良的Bonnor-Ebert球中的粉尘温度可用于计算初始径向分子丰度分布。然后提取对应于两个不同核心年龄的选定冷却分子的丰度,以确定两个时间步长的气体温度。在迭代过程中重复计算,得出与气体温度一致的分子丰度。使用模拟的丰度轮廓来计算选定物质的线排放轮廓。结果。气体温度是时间的函数。气体随着核芯变老而加热,因为冷却分子被耗尽到了谷物表面。与耗尽有关的气体温度变化约为1?K。各种冷却分子对总冷却能力的贡献随时间而变化,但在这里研究的环境范围内,主要的冷却分子始终是CO。径向化学丰度曲线并非无关紧要:不同的物种呈现不同的程度损耗,在某些情况下甚至在t?>?105?年时向内增加。线发射模拟表明,根据所考虑的示踪物种类,不同年龄的岩心会呈现出明显不同的线发射曲线。结论。化学丰度和相关的管路冷却能力随时间而变化。大多数化学物质以超过〜105Ω·cm-3的密度被耗尽。值得注意的例外是NH 3和N 2 H 2 +?后者即使在nH≤〜106?cm-3时也基本上没有耗尽。另一方面,通过向内增加的丰度梯度可以看出,即使在t?〜?105?年,在低气体密度的地区化学丰度也没有显着发展。除了在高密度区域中气-尘耦合很明显以外,气体温度可能与粉尘温度明显不同。这可能会对核心稳定性产生影响。由于不断变化的化学丰度梯度引起的线辐射剖面的潜在大变化,我们的模型支持这样的想法,即观察到的线辐射剖面可以在一定程度上限制无星核的年龄。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号