...
首页> 外文期刊>Astronomy and astrophysics >The chemistry of ions in the Orion Bar I. – CH+, SH+, and CF+ - The effect of high electron density and vibrationally excited H2 in a warm PDR surface
【24h】

The chemistry of ions in the Orion Bar I. – CH+, SH+, and CF+ - The effect of high electron density and vibrationally excited H2 in a warm PDR surface

机译:Orion Bar I. – CH +,SH +和CF +中离子的化学-在温暖的PDR表面中高电子密度和振动激发的H2的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The abundances of interstellar CH+ and SH+ are not well understood as their most likely formation channels are highly endothermic. Several mechanisms have been proposed to overcome the high activation barriers, including shocks, turbulence, and H2 vibrational excitation. Aims. Using data from the Herschel Space Observatory, we studied the formation of ions, in particular CH+ and SH+ in a typical high UV-illumination warm and dense photon-dominated region (PDR), the Orion Bar. Methods. The HIFI instrument on board Herschel provides velocity-resolved line profiles of CH+ 1–0 and 2–1 and three hyperfine transitions of SH+ 12?01. The PACS instrument provides information on the excitation and spatial distribution of CH+ by extending the observed CH+ transitions up to J?=?6–5. We compared the observed line intensities to the predictions of radiative transfer and PDR codes. Results. All CH+, SH+, and CF+ lines analyzed in this paper are seen in emission. The widths of the CH+ 2–1 and 1–0 transitions are of ?~5?km?s-1, significantly broader than the typical width of dense gas tracers in the Orion Bar (~2–3?km?s-1) and are comparable to the width of species that trace the interclump medium such as C+ and HF. The detected SH+ transitions are narrower compared to CH+ and have line widths of ?~3?km?s-1, indicating that SH+ emission mainly originates in denser condensations. Non-LTE radiative transfer models show that electron collisions affect the excitation of CH+ and SH+ and that reactive collisions need to be taken into account to calculate the excitation of CH+. Comparison to PDR models shows that CH+ and SH+ are tracers of the warm surface region (AV?
机译:上下文。由于它们最可能的形成通道是高度吸热的,因此人们对星际CH +和SH +的丰度还没有很好的理解。已经提出了几种机制来克服高激活障碍,包括冲击,湍流和H2振动激发。目的利用来自赫歇尔太空天文台的数据,我们研究了离子的形成,特别是在典型的高紫外线照射下温暖且密集的光子占主导的区域(PDR)(猎户座)中CH +和SH +的形成。方法。 Herschel板上的HIFI仪器提供CH + 1–0和2–1的速度分辨线轮廓以及SH + 12?01的三个超精细跃迁。 PACS仪器通过将观测到的CH +跃迁扩展到J?=?6-5来提供有关CH +的激发和空间分布的信息。我们将观察到的线强度与辐射传输和PDR码的预测进行了比较。结果。在排放中可以看到本文分析的所有CH +,SH +和CF +谱线。 CH + 2–1和1–0跃迁的宽度为~~ 5?km?s-1,比Orion Bar中密集的气体示踪剂的典型宽度(〜2–3?km?s-1)宽得多),并且可与追踪簇状介质(例如C +和HF)的物质的宽度相比。与CH +相比,检测到的SH +跃迁更窄,且线宽为~~ 3?km?s-1,这表明SH +的发射主要来自较稠密的凝结。非LTE辐射传递模型表明,电子碰撞会影响CH +和SH +的激发,并且需要考虑反应性碰撞才能计算CH +的激发。与PDR模型的比较表明,CH +和SH +是温度在500至1000?K之间的PDR温暖表面区域(AV≤<1.5)的示踪剂。我们还检测到CF +的5–4跃迁在?〜1.9?km?s-1的宽度上,与致密气体示踪剂的宽度一致。 CF + 5–4过渡的强度与先前观察到的朝向Orion Bar的低J过渡的强度一致。结论。对PDR模型的解析近似和数值比较表明,H2的内部振动能可以解释在电离前沿附近的Orion Bar中典型物理条件下CH +的形成。 SH +的形成也可能由H2振动激发来解释。 CH +和SH +的丰度比跟踪这些离子的破坏路径,间接地,H,H2和电子丰度的比值随进入云层的深度而变化。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号