首页> 外文期刊>Astronomy and astrophysics >Evolution of CO lines in time-dependent models of protostellar disk formation
【24h】

Evolution of CO lines in time-dependent models of protostellar disk formation

机译:星际盘形成的时变模型中CO线的演变

获取原文
           

摘要

Context. Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. While continuum emission can trace the dust evolution, spectrally resolved molecular lines are needed to determine the physical structure and collapse dynamics. Aims. The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage (Menv?>?M?) are investigated. Methods. The semi-analytic 2D axisymmetric model of Visser and collaborators has been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures. The time-dependent CO abundance is obtained from the adsorption and thermal desorption chemistry. Non-LTE near-IR (NIR), far-IR (FIR), and submm lines of CO have been simulated at a number of time steps. Results. In single dish (10?20′′ beams), the dynamics during the collapse are best probed through highly excited 13CO and C18O lines, which are significantly broadened by the infall process. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR data does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel and from ground-based telescopes. The NIR spectra provide complementary information to the submm lines by probing not only the cold outer envelope but also the warm inner region. The NIR high-J (≥8) absorption lines are particularly sensitive to the physical structure of the inner few AU, which does show evolution. The models indicate that observations of 13CO and C18O low-J submm lines within a ≤1″ (at 140 pc) beam are well suited to probe embedded disks in Stage I (Menv?
机译:上下文。恒星和行星形成理论预测,当包壳塌陷并形成吸积盘时,密度,温度和速度结构会发生变化。虽然连续辐射可以追踪灰尘的演变,但是需要光谱解析的分子线来确定物理结构和塌陷动力学。目的这项工作的目的是模拟低质量恒星形成过程中分子激发,谱线分布和相关可观察物的演化。具体地说,研究在深度嵌入阶段(Menv→> M)的磁盘签名。方法。 Visser和合作者的半解析二维轴对称模型已用于描述从前恒星到T-Tauri相的密度,恒星质量和光度的演变。进行了完整的辐射传递计算,以准确确定随时间变化的粉尘温度。从吸附和热脱附化学获得随时间变化的CO丰度。非LTE近红外(NIR),远红外(FIR)和CO的亚毫米线已经在许多时间步长上进行了仿真。结果。在单碟(10?20''梁)中,塌陷过程中的动力学最好通过高激发的13CO和C18O谱线进行探测,这些谱线会由于入射过程而大大加宽。与粉尘温度相反,从亚毫米/ FIR数据得出的CO激发温度在原星演化过程中没有变化,这与用赫歇尔和地面望远镜获得的C18O观测结果一致。 NIR光谱不仅可以探测冷的外部包层,还可以探测温暖的内部区域,从而为亚毫米线提供补充信息。 NIR高J(≥8)吸收线对内部少数AU的物理结构特别敏感,这确实显示出进化。这些模型表明,在≤1英寸(140 pc)的光束中观察到的13CO和C18O低J亚毫米线非常适合探测第一阶段(Menv?<?M?)源中的嵌入式磁盘,这与最近的干涉测量结果一致。需要使用ALMA的高信噪比亚弧分辨率数据来检测阶段0阶段中小的旋转支撑盘的存在,并讨论各种诊断方法。将空间和光谱解析线与ALMA以及在NIR处结合使用,是探测嵌入阶段内包膜和圆盘形成过程的有力方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号