首页> 外文期刊>Applied Microbiology >The Redox Cofactor F420 Protects Mycobacteria from Diverse Antimicrobial Compounds and Mediates a Reductive Detoxification System
【24h】

The Redox Cofactor F420 Protects Mycobacteria from Diverse Antimicrobial Compounds and Mediates a Reductive Detoxification System

机译:氧化还原辅因子F420保护分枝杆菌免受多种抗菌化合物的干扰并介导还原性排毒系统

获取原文
       

摘要

A defining feature of mycobacterial redox metabolism is the use of an unusual deazaflavin cofactor, F_(420). This cofactor enhances the persistence of environmental and pathogenic mycobacteria, including after antimicrobial treatment, although the molecular basis for this remains to be understood. In this work, we explored our hypothesis that F_(420) enhances persistence by serving as a cofactor in antimicrobial-detoxifying enzymes. To test this, we performed a series of phenotypic, biochemical, and analytical chemistry studies in relation to the model soil bacterium Mycobacterium smegmatis . Mutant strains unable to synthesize or reduce F_(420) were found to be more susceptible to a wide range of antibiotic and xenobiotic compounds. Compounds from three classes of antimicrobial compounds traditionally resisted by mycobacteria inhibited the growth of F_(420) mutant strains at subnanomolar concentrations, namely, furanocoumarins (e.g., methoxsalen), arylmethanes (e.g., malachite green), and quinone analogues (e.g., menadione). We demonstrated that promiscuous F_(420)H_(2)-dependent reductases directly reduce these compounds by a mechanism consistent with hydride transfer. Moreover, M. smegmatis strains unable to make F_(420)H_(2) lost the capacity to reduce and detoxify representatives of the furanocoumarin and arylmethane compound classes in whole-cell assays. In contrast, mutant strains were only slightly more susceptible to clinical antimycobacterials, and this appeared to be due to indirect effects of F_(420) loss of function (e.g., redox imbalance) rather than loss of a detoxification system. Together, these data show that F_(420) enhances antimicrobial resistance in mycobacteria and suggest that one function of the F_(420)H_(2)-dependent reductases is to broaden the range of natural products that mycobacteria and possibly other environmental actinobacteria can reductively detoxify.IMPORTANCE This study reveals that a unique microbial cofactor, F_(420), is critical for antimicrobial resistance in the environmental actinobacterium Mycobacterium smegmatis . We show that a superfamily of redox enzymes, the F_(420)H_(2)-dependent reductases, can reduce diverse antimicrobials in vitro and in vivo . M. smegmatis strains unable to make or reduce F_(420) become sensitive to inhibition by these antimicrobial compounds. This suggests that mycobacteria have harnessed the unique properties of F_(420) to reduce structurally diverse antimicrobials as part of the antibiotic arms race. The F_(420)H_(2)-dependent reductases that facilitate this process represent a new class of antimicrobial-detoxifying enzymes with potential applications in bioremediation and biocatalysis.
机译:分枝杆菌氧化还原代谢的主要特征是使用了不常见的脱氮黄素辅助因子F_(420)。该辅因子增强了环境和致病性分枝杆菌的持久性,包括在进行抗微生物处理后,尽管其分子基础仍有待了解。在这项工作中,我们探索了F_(420)通过充当抗菌素解毒酶的辅助因子来增强持久性的假设。为了测试这一点,我们对模型土壤细菌耻垢分枝杆菌进行了一系列的表型,生化和分析化学研究。发现无法合成或降低F_(420)的突变菌株对多种抗生素和异种生物化合物更敏感。传统上受分枝杆菌抵抗的三类抗菌化合物中的化合物在亚纳摩尔浓度下抑制F_(420)突变菌株的生长,即呋喃香豆素(如甲氧沙林),芳基甲烷(如孔雀石绿)和醌类似物(如甲萘醌) 。我们证明,混杂的F_(420)H_(2)依赖性还原酶通过与氢化物转移一致的机制直接还原这些化合物。此外,不能使F_(420)H_(2)的耻垢分枝杆菌菌株在全细胞分析中丧失了还原呋喃香豆素和芳基甲烷化合物类别代表的能力和解毒能力。相反,突变株对临床抗分枝杆菌的敏感性稍高一些,这似乎是由于F_(420)功能丧失(例如氧化还原失衡)的间接作用而不是排毒系统的丧失。总之,这些数据表明F_(420)增强了分枝杆菌的抗药性,并表明F_(420)H_(2)依赖性还原酶的功能之一是扩大分枝杆菌和其他环境放线菌可以还原的天然产物的范围。这项研究揭示了一种独特的微生物辅因子F_(420)对于环境放线杆菌耻垢分枝杆菌中的抗药性至关重要。我们显示氧化还原酶,F_(420)H_(2)依赖还原酶的超家族,可以减少体外和体内的各种抗菌药物。无法制造或降低F_(420)的耻垢分枝杆菌菌株对这些抗菌化合物的抑制作用敏感。这表明分枝杆菌已经利用F_(420)的独特特性来减少结构多样性的抗菌素,这是抗生素军备竞赛的一部分。促进此过程的F_(420)H_(2)依赖性还原酶代表了一类新的抗微生物解毒酶,在生物修复和生物催化中具有潜在的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号