首页> 外文期刊>Applied Microbiology >Structure-Function Analysis Indicates that an Active-Site Water Molecule Participates in Dimethylsulfoniopropionate Cleavage by DddK
【24h】

Structure-Function Analysis Indicates that an Active-Site Water Molecule Participates in Dimethylsulfoniopropionate Cleavage by DddK

机译:结构功能分析表明,活性位点水分子通过DddK参与了丙酸二甲酯的裂解。

获取原文
       

摘要

The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram quantities in marine environments and has important roles in global sulfur and carbon cycling. Many marine microorganisms catabolize DMSP via DMSP lyases, generating the climate-active gas dimethyl sulfide (DMS). DMS oxidation products participate in forming cloud condensation nuclei and, thus, may influence weather and climate. SAR11 bacteria are the most abundant marine heterotrophic bacteria; many of them contain the DMSP lyase DddK, and their dddK transcripts are relatively abundant in seawater. In a recently described catalytic mechanism for DddK, Tyr64 is predicted to act as the catalytic base initiating the β-elimination reaction of DMSP. Tyr64 was proposed to be deprotonated by coordination to the metal cofactor or its neighboring His96. To further probe this mechanism, we purified and characterized the DddK protein from Pelagibacter ubique strain HTCC1062 and determined the crystal structures of wild-type DddK and its Y64A and Y122A mutants (bearing a change of Y to A at position 64 or 122, respectively), where the Y122A mutant is complexed with DMSP. The structural and mutational analyses largely support the catalytic role of Tyr64, but not the method of its deprotonation. Our data indicate that an active water molecule in the active site of DddK plays an important role in the deprotonation of Tyr64 and that this is far more likely than coordination to the metal or His96. Sequence alignment and phylogenetic analysis suggest that the proposed catalytic mechanism of DddK has universal significance. Our results provide new mechanistic insights into DddK and enrich our understanding of DMS generation by SAR11 bacteria.IMPORTANCE The climate-active gas dimethyl sulfide (DMS) plays an important role in global sulfur cycling and atmospheric chemistry. DMS is mainly produced through the bacterial cleavage of marine dimethylsulfoniopropionate (DMSP). When released into the atmosphere from the oceans, DMS can be photochemically oxidized into DMSO or sulfate aerosols, which form cloud condensation nuclei that influence the reflectivity of clouds and, thereby, global temperature. SAR11 bacteria are the most abundant marine heterotrophic bacteria, and many of them contain DMSP lyase DddK to cleave DMSP, generating DMS. In this study, based on structural analyses and mutational assays, we revealed the catalytic mechanism of DddK, which has universal significance in SAR11 bacteria. This study provides new insights into the catalytic mechanism of DddK, leading to a better understanding of how SAR11 bacteria generate DMS.
机译:在海洋环境中,渗透压的二甲基磺基丙酸二甲酯(DMSP)的生产量为几克,在全球硫和碳循环中具有重要作用。许多海洋微生物通过DMSP裂解酶将DMSP分解代谢,生成具有气候活性的二甲基硫醚(DMS)。 DMS氧化产物参与形成云凝结核,因此可能影响天气和气候。 SAR11细菌是最丰富的海洋异养细菌。其中许多含有DMSP裂解酶DddK,其dddK转录本在海水中相对丰富。在最近描述的DddK催化机理中,预计Tyr64充当引发DMSPβ-消除反应的催化碱。有人提议通过与金属辅因子或其邻近的His96协同作用使Tyr64去质子化。为了进一步探究这一机制,我们纯化并鉴定了乌拉氏梭菌HTCC1062的DddK蛋白,并确定了野生型DddK的晶体结构及其Y64A和Y122A突变体(分别在位置64或122处将Y改变为A)。 ,其中Y122A突变体与DMSP复合。结构和突变分析在很大程度上支持Tyr64的催化作用,但不支持其去质子化的方法。我们的数据表明,DddK活性位点中的活性水分子在Tyr64的去质子化中起重要作用,这远比与金属或His96的配位更有可能。序列比对和系统进化分析表明,拟议的DddK催化机制具有普遍意义。我们的结果为DddK的研究提供了新的机制,并丰富了我们对SAR11细菌产生DMS的理解。 DMS主要是通过细菌裂解海洋二甲基磺基丙酸二甲酯(DMSP)而产生的。当DMS从海洋释放到大气中时,可以被光化学氧化成DMSO或硫酸盐气溶胶,形成形成云凝结的核,影响云的反射率,进而影响全球温度。 SAR11细菌是最丰富的海洋异养细菌,其中许多包含DMSP裂解酶DddK来裂解DMSP,从而产生DMS。在这项研究中,基于结构分析和突变分析,我们揭示了DddK的催化机制,该DddK在SAR11细菌中具有普遍意义。这项研究为DddK的催化机制提供了新的见解,从而使人们对SAR11细菌如何产生DMS有了更好的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号