...
首页> 外文期刊>Astronomy and astrophysics >Investigating the X-ray emission from the massive WR+O binary WR?22 using 3D hydrodynamical models
【24h】

Investigating the X-ray emission from the massive WR+O binary WR?22 using 3D hydrodynamical models

机译:使用3D流体动力学模型研究大型WR + O二元WR?22的X射线发射

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aims. We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR?22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Methods. Three dimensional (3D) adaptive-mesh refinement (AMR) simulations are presented that include radiative driving, gravity, optically-thin radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. Results. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WR’s wind overwhelms the O star’s and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR?collapses onto the O star. X-ray calculations reveal that when a stable WCR exists the models over-predict the observed X-ray flux by more than two orders of magnitude. The collapse of the WCR onto the O star substantially reduces the discrepancy in the 2–10keV flux to a factor of ???6 at φ?=?0.994. However, the observed spectrum is not well matched by the models. Conclusions. We conclude that the agreement between the models and observations could be improved by increasing the ratio of the mass-loss rates in favour of the WR star to the extent that a normal wind ram pressure balance does not occur at any orbital phase, potentially leading to a sustained collapse of the WCR onto the O star. Radiative braking may then play a significant r?le for the WCR?dynamics and resulting X-ray emission.
机译:目的我们研究了风-风碰撞和随后的WR + O恒星双星WR?22的X射线辐射对恒星风的加速度,辐射冷却和轨道运动的依赖性。方法。提出了三维(3D)自适应网格细化(AMR)模拟,其中包括辐射驱动,重力,光学稀薄的辐射冷却和轨道运动。用瞬时加速和辐射驱动的恒星风进行了模拟。在模拟输出上进行了辐射传递计算,以生成合成X射线数据,该数据用于与观测值进行详细比较。结果。当在模拟中采用瞬时加速的恒星风时,在所有轨道相位都建立了稳定的风-风碰撞区(WCR)。相反,当以辐射状驱动恒星风,从而考虑了风的加速区域时,WCR更加不稳定。当恒星接近星云时,WR的风压压倒了O星,并且在非线性薄壳不稳定性(NTSI)对冲击产生重大破坏之后,WCR坍塌到了O星上。 X射线计算表明,当存在稳定的WCR时,这些模型会将观察到的X射线通量高估两个以上的数量级。 WCR在O星上的塌陷将φ2=?0.994时2-10keV通量的差异基本上减小到了6倍。但是,所观察到的光谱与模型并不完全匹配。结论。我们得出结论,可以通过增加质量损失率的比值来支持WR星,从而在任何轨道阶段均不会出现正常的风锤压力平衡,从而提高模型与观测值之间的一致性。 WCR持续坍塌到O星上。然后,辐射制动可能对WCR动力学和产生的X射线辐射起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号