首页> 外文期刊>Astronomy and astrophysics >Internal heating of old neutron stars: contrasting different mechanisms
【24h】

Internal heating of old neutron stars: contrasting different mechanisms

机译:老中子星的内部加热:不同机制的对比

获取原文
           

摘要

Context. The standard cooling models of neutron stars predict temperatures of T??107?yr. However, the likely thermal emission detected from the millisecond pulsar J0437-4715, of spin-down age ts?~?7?×?109?yr, implies a temperature T?~?105?K. Thus, a heating mechanism needs to be added to the cooling models in order to obtain agreement between theory and observation. Aims. Several internal heating mechanisms could be operating in neutron stars, such as magnetic field decay, dark matter accretion, crust cracking, superfluid vortex creep, and non-equilibrium reactions (“rotochemical heating”). We study these mechanisms to establish which could be the dominant source of thermal emission from old pulsars. Methods. We show by simple estimates that magnetic field decay, dark matter accretion, and crust cracking are unlikely to have a significant heating effect on old neutron stars. The thermal evolution for the other mechanisms is computed with the code of Fernández and Reisenegger. Given the dependence of the heating mechanisms on the spin-down parameters, we study the thermal evolution for two types of pulsars: young, slowly rotating “classical” pulsars and old, fast rotating millisecond pulsars. Results. We find that magnetic field decay, dark matter accretion, and crust cracking do not produce any detectable heating of old pulsars. Rotochemical heating and vortex creep can be important both for classical pulsars and millisecond pulsars. More restrictive upper limits on the surface temperatures of classical pulsars could rule out vortex creep as the main source of thermal emission. Rotochemical heating in classical pulsars is driven by the chemical imbalance built up during their early spin-down, and is therefore strongly sensitive to their initial rotation period.
机译:上下文。中子星的标准冷却模型预测的温度为T ?? 107?yr。但是,从旋转脉冲年龄ts 1〜7 7×10 9 yr的毫秒脉冲星J0437-4715检测到的可能的热发射意味着温度T 1〜105°K。因此,需要在冷却模型中添加加热机制,以便在理论和观察之间取得一致。目的在中子星中可能有几种内部加热机制,例如磁场衰减,暗物质积聚,地壳破裂,超流体涡旋蠕变和非平衡反应(“旋转化学加热”)。我们研究了这些机制,以确定哪些可能是旧脉冲星产生热量的主要来源。方法。我们通过简单的估算表明,磁场衰减,暗物质积聚和地壳破裂不太可能对旧中子星产生明显的加热作用。使用Fernández和Reisenegger的代码计算其他机制的热演化。考虑到加热机制对转速下降参数的依赖性,我们研究了两种脉冲星的热演化:年轻的,缓慢旋转的“经典”脉冲星和旧的,快速旋转的毫秒脉冲星。结果。我们发现磁场衰减,暗物质积聚和地壳破裂不会产生任何可检测到的旧脉冲星加热。旋转化学加热和涡旋蠕变对于经典脉冲星和毫秒脉冲星都可能很重要。经典脉冲星表面温度的更高限制上限可以排除涡旋蠕变作为热辐射的主要来源。传统脉冲星的旋转化学加热是由其早期旋转下降期间积累的化学失衡驱动的,因此对其初始旋转周期非常敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号