首页> 外文期刊>Applied Microbiology >Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland
【24h】

Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland

机译:富营养化泥炭地碳降解和养分(氮和磷)的微生物代谢潜能

获取原文
       

摘要

This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria , and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter . Methylocystaceae -like small-subunit (SSU) rRNA genes, pmoA , and mmoX genes were more abundant among methanotrophs. Genes encoding N_(2) fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N_(2) fixation, and oligosaccharide degradation at MEF relative to other wetland and soil environments, consistent with the nutrient-poor and carbohydrate-rich conditions found in this Sphagnum -dominated boreal peatland.
机译:这项研究结合了宏基因组学和核磁共振(NMR)光谱方法,研究了明尼苏达州马塞尔实验林(MEF)中非营养养护泥炭地土壤中有机物质分解以及氮(N)和磷(P)吸收的微生物代谢潜力,美国。该分析揭示了关键酶途径和包含这些途径的分类单元的垂直分层。荟萃基因组学分析显示,参与芳香族化合物降解的编码漆酶和双加氧酶的基因的相对丰度随深度而降低,而编码氨基糖和所有四个糖基代谢的基因的相对丰度随深度而增加,同时降低了50%。碳水化合物含量。大多数Cu氧化酶与变形杆菌和酸性细菌的基因密切相关,并且4型漆酶样Cu-氧化酶基因的丰富度是3型基因的8倍以上,这表明4型Cu-氧化酶在酚类化合物中的重要作用而被忽略降解。在这些系统中,与硫酸盐还原和甲烷生成相关的基因是最丰富的厌氧呼吸基因,而反硝化和Fe(III)还原的基因检测水平较低。发酵基因的相对丰度随着深度的增加而增加,并与滑膜细菌密切相关。甲藻类中甲基囊藻科样小亚基(SSU)rRNA基因,pmoA和mmoX基因更为丰富。与其他生态系统相比,编码N_(2)固定,P吸收和P调节子的基因在表面泥炭中显着丰富,表明N和P受到限制。在这种P限制的环境中,整个泥炭剖面中无机正磷酸盐的持久性表明P可能与顽固的有机化合物结合,从而限制了P在地下的生物利用度。对比宏基因组学分析显示,相对于其他湿地和土壤环境,MEF的P转运和饥饿,N_(2)固定和低聚糖降解具有很高的代谢潜能,这与该以泥炭藓为主的营养贫乏和碳水化合物丰富的条件一致北方泥炭地。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号