首页> 外文期刊>Applied Microbiology >Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria
【24h】

Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria

机译:甲基硒醇作为甲烷氧化细菌将亚硒酸盐还原成Se / S物种的前体

获取原文
           

摘要

A wide range of microorganisms have been shown to transform selenium-containing oxyanions to reduced forms of the element, particularly selenium-containing nanoparticles. Such reactions are promising for the detoxification of environmental contamination and the production of valuable selenium-containing products, such as nanoparticles for application in biotechnology. It has previously been shown that aerobic methane-oxidizing bacteria, including Methylococcus capsulatus (Bath), are able to perform the methane-driven conversion of selenite (SeO32?) to selenium-containing nanoparticles and methylated selenium species. Here, the biotransformation of selenite by Mc. capsulatus (Bath) has been studied in detail via a range of imaging, chromatographic, and spectroscopic techniques. The results indicate that the nanoparticles are produced extracellularly and have a composition distinct from that of nanoparticles previously observed from other organisms. The spectroscopic data from the methanotroph-derived nanoparticles are best accounted for by a bulk structure composed primarily of octameric rings in the form Se8 ?xSx with an outer coat of cell-derived biomacromolecules. Among a range of volatile methylated selenium and selenium-sulfur species detected, methyl selenol (CH3SeH) was found only when selenite was the starting material, although selenium nanoparticles (both biogenic and chemically produced) could be transformed into other methylated selenium species. This result is consistent with methyl selenol being an intermediate in the methanotroph-mediated biotransformation of selenium to all the methylated and particulate products observed.IMPORTANCE Aerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well-characterized strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alphaproteobacterial methanotrophs, respectively, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium-containing particulates. Both conversions can be harnessed for the bioremediation of selenium pollution using biological or fossil methane as the feedstock, and these organisms could be used to produce selenium-containing particles for food and biotechnological applications. Using an extensive suite of techniques, we identified precursors of selenium nanoparticle formation and also found that these nanoparticles are made up of eight-membered mixed selenium and sulfur rings.
机译:已经显示出广泛的微生物将含硒的氧阴离子转化为还原形式的元素,特别是含硒的纳米颗粒。此类反应有望消除环境污染,并生产出有价值的含硒产品,例如用于生物技术的纳米颗粒。以前已经证明,包括荚膜甲基球菌(Bath)在内的好氧甲烷氧化细菌能够将甲烷驱动的亚硒酸盐(SeO32 3)转化为含硒的纳米颗粒和甲基化的硒。在这里,Mc对亚硒酸盐的生物转化。通过一系列的成像,色谱和光谱技术对荚膜(浴)进行了详细研究。结果表明,纳米颗粒是在细胞外产生的,其组成不同于先前从其他生物中观察到的纳米颗粒。来自甲烷甲基营养素的纳米粒子的光谱数据最好由主要由Se8αxSx形式的八聚环组成并带有细胞源生物大分子外层的本体结构解释。在检测到的一系列挥发性甲基化硒和硒-硫物种中,虽然硒纳米颗粒(无论是生物来源的还是化学方法产生的)都可以转化为其他甲基化的硒物质,但仅当以硒酸盐为原料时才发现甲基硒醇(CH3SeH)。该结果与甲基硒醇是甲烷营养转化介导的硒向所观察到的所有甲基化和颗粒状产物生物转化的中间产物相符。重要信息需氧甲烷氧化细菌在环境中无处不在。两种特征明确的菌株,Mc。分别代表γ-和α-变形细菌甲烷氧化菌的荚膜(巴斯)和甲基孢子虫OB3b可以将环境污染物亚硒酸盐转化为挥发性硒化合物和含硒颗粒。两种转化都可以利用生物或化石甲烷作为原料进行硒污染的生物修复,并且这些生物可以用于生产含硒的颗粒,用于食品和生物技术应用。通过使用一系列广泛的技术,我们确定了硒纳米颗粒形成的前体,还发现这些纳米颗粒由八元混合的硒环和硫环组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号