首页> 外文期刊>Applied Microbiology >Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater
【24h】

Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater

机译:富金属地下水对锰矿床中生物的低pH Mn(II)氧化

获取原文
       

摘要

The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H_(2)O)_(2)(Mn~(4+),Mn~(3+))_(5)O_(10)] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria , Actinobacteria , and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.IMPORTANCE This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling and show the potential for new bioremediation strategies aimed at enhancing biological Mn oxidation in low-pH environments for contaminant mitigation.
机译:低pH Mn(II)生物氧化的机理,关键生物和地球化学意义尚待探索。在这里,我们调查了前铀矿开采区受酸性(pH 4.8)富含金属的地下水影响的次生地下Mn氧化物沉积物中原生Mn(II)氧化微生物群落的结构。与邻近的土壤层相比,Mn沉积物中的微生物多样性最高,包括大多数已知的Mn(II)氧化细菌(MOB)和两个属的Mn(II)氧化真菌(MOF)。电子X射线显微分析表明,锰铁矿[(Ba,H_(2)O)_(2)(Mn〜(4 +),Mn〜(3 +))_(5)O_(10)]明显富集存款。典型的对应分析表明,某些真菌,细菌和古细菌基团与本地锰氧化物牢固相关。从pH值5.5或7.2下从酸性锰矿床中分离到了变形杆菌,放线菌和拟杆菌内的8个MOB和1个属于子囊菌的MOF菌株。土壤-地下水微观世界表明,锰矿床中锰(II)的耗竭比相邻土壤层快2.5倍。在非生物对照中未观察到消耗,这表明在低pH条件下,生物学贡献是Mn(II)氧化的主要驱动力。天然低pH Mn(II)氧化剂的组成和物种特异性非常适合原位条件,这些生物可能在酸性,贫营养化中发生的基本生物地球化学过程(例如金属自然衰减)中发挥核心作用重要信息这项研究提供了多条证据,表明即使在酸性pH下,微生物也是Mn(II)氧化的主要驱动力,为Mn生物地球化学循环提供了新的见解。一个独特的,高度适应的微生物群落居住在酸性,贫营养的锰沉积物中,并介导生物锰的氧化。这些数据凸显了生物过程对于Mn生物地球化学循环的重要性,并显示了新的生物修复策略的潜力,这些策略旨在增强低pH环境中的生物Mn氧化,以减轻污染物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号