首页> 外文期刊>Applied Microbiology >Remarkable Ability of Pandoraea pnomenusa B356 Biphenyl Dioxygenase To Metabolize Simple Flavonoids
【24h】

Remarkable Ability of Pandoraea pnomenusa B356 Biphenyl Dioxygenase To Metabolize Simple Flavonoids

机译:Pandoraea pnomenusa B356联苯双加氧酶的显着能力代谢简单的类黄酮

获取原文
       

摘要

Many investigations have provided evidence that plant secondary metabolites, especially flavonoids, may serve as signal molecules to trigger the abilities of bacteria to degrade chlorobiphenyls in soil. However, the bases for this interaction are largely unknown. In this work, we found that BphAE_(B356), the biphenyl/chlorobiphenyl dioxygenase from Pandoraea pnomenusa B356, is significantly better fitted to metabolize flavone, isoflavone, and flavanone than BphAE_(LB400) from Burkholderia xenovorans LB400. Unlike those of BphAE_(LB400), the kinetic parameters of BphAE_(B356) toward these flavonoids were in the same range as for biphenyl. In addition, remarkably, the biphenyl catabolic pathway of strain B356 was strongly induced by isoflavone, whereas none of the three flavonoids induced the catabolic pathway of strain LB400. Docking experiments that replaced biphenyl in the biphenyl-bound form of the enzymes with flavone, isoflavone, or flavanone showed that the superior ability of BphAE_(B356) over BphAE_(LB400) is principally attributable to the replacement of Phe336 of BphAE_(LB400) by Ile334 and of Thr335 of BphAE_(LB400) by Gly333 of BphAE_(B356). However, biochemical and structural comparison of BphAE_(B356) with BphAE_( p4 ), a mutant of BphAE_(LB400) which was obtained in a previous work by the double substitution Phe336Met Thr335Ala of BphAE_(LB400), provided evidence that other residues or structural features of BphAE_(B356) whose precise identification the docking experiment did not allow are also responsible for the superior catalytic abilities of BphAE_(B356). Together, these data provide supporting evidence that the biphenyl catabolic pathways have evolved divergently among proteobacteria, where some of them may serve ecological functions related to the metabolism of plant secondary metabolites in soil.
机译:许多研究提供了证据,表明植物的次生代谢产物,尤其是类黄酮,可以作为信号分子,触发细菌降解土壤中的氯联苯的能力。然而,这种相互作用的基础在很大程度上是未知的。在这项工作中,我们发现BphAE_(B356)(来自Pandoraea pnomenusa B356的联苯/氯联苯双加氧酶)比来自Burkholderia xenovorans LB400的BphAE_(LB400)更适合代谢黄酮,异黄酮和黄烷酮。与BphAE_(LB400)的那些不同,BphAE_(B356)对这些类黄酮的动力学参数与联苯在相同范围内。另外,值得注意的是,B356菌株的联苯分解代谢途径被异黄酮强烈诱导,而这三种类黄酮均未诱导LB400菌株的分解代谢途径。用黄酮,异黄酮或黄烷酮替代酶的联苯结合形式联苯的对接实验表明,BphAE_(B356)优于BphAE_(LB400)的能力主要归因于BphAE_(LB400)被Pph336取代。 BphAE_(B356)的Gly333的Ile334和BphAE_(LB400)的Thr335。然而,BphAE_(B356)与BphAE_(LB400)的突变体BphAE_(p400)的生化和结构比较,是在先前的工作中通过BphAE_(LB400)的双取代Phe336Met Thr335Ala获得的,它提供了其他残基或结构的证据BphAE_(B356)的特征(对接实验不允许精确识别)也是BphAE_(B356)优异的催化能力的原因。在一起,这些数据提供了支持性证据,表明联苯分解代谢途径在蛋白质细菌中发生了分歧,其中一些可能起到与土壤中植物次生代谢产物代谢有关的生态功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号