首页> 外文期刊>Applied and Environmental Microbiology >Remarkable Ability of Pandoraea pnomenusa B356 Biphenyl Dioxygenase To Metabolize Simple Flavonoids
【24h】

Remarkable Ability of Pandoraea pnomenusa B356 Biphenyl Dioxygenase To Metabolize Simple Flavonoids

机译:Pandoraea pnomenusa B356联苯双加氧酶的显着能力代谢简单的类黄酮

获取原文
           

摘要

Many investigations have provided evidence that plant secondary metabolites, especially flavonoids, may serve as signal molecules to trigger the abilities of bacteria to degrade chlorobiphenyls in soil. However, the bases for this interaction are largely unknown. In this work, we found that BphAEB356, the biphenyl/chlorobiphenyl dioxygenase from Pandoraea pnomenusa B356, is significantly better fitted to metabolize flavone, isoflavone, and flavanone than BphAELB400 from Burkholderia xenovorans LB400. Unlike those of BphAELB400, the kinetic parameters of BphAEB356 toward these flavonoids were in the same range as for biphenyl. In addition, remarkably, the biphenyl catabolic pathway of strain B356 was strongly induced by isoflavone, whereas none of the three flavonoids induced the catabolic pathway of strain LB400. Docking experiments that replaced biphenyl in the biphenyl-bound form of the enzymes with flavone, isoflavone, or flavanone showed that the superior ability of BphAEB356 over BphAELB400 is principally attributable to the replacement of Phe336 of BphAELB400 by Ile334 and of Thr335 of BphAELB400 by Gly333 of BphAEB356. However, biochemical and structural comparison of BphAEB356 with BphAEp4, a mutant of BphAELB400 which was obtained in a previous work by the double substitution Phe336Met Thr335Ala of BphAELB400, provided evidence that other residues or structural features of BphAEB356 whose precise identification the docking experiment did not allow are also responsible for the superior catalytic abilities of BphAEB356. Together, these data provide supporting evidence that the biphenyl catabolic pathways have evolved divergently among proteobacteria, where some of them may serve ecological functions related to the metabolism of plant secondary metabolites in soil.
机译:许多研究提供了证据,表明植物的次生代谢产物,尤其是类黄酮,可以作为信号分子,触发细菌降解土壤中的氯联苯的能力。然而,这种相互作用的基础在很大程度上是未知的。在这项工作中,我们发现BphAEB356(来自Pandoraea pnomenusa B356的联苯/氯联苯双加氧酶)比来自Burkholderia xenovorans LB400的BphAELB400更适合代谢黄酮,异黄酮和黄烷酮。与BphAELB400不同,BphAEB356对这些类黄酮的动力学参数与联苯在相同范围内。另外,值得注意的是,B356菌株的联苯分解代谢途径被异黄酮强烈诱导,而这三种类黄酮均未诱导LB400菌株的分解代谢途径。用黄酮,异黄酮或黄烷酮替代酶的联苯结合形式联苯的对接实验表明,BphAEB356优于BphAELB400的能力主要归因于Iph334取代了BphAELB400的Phe336以及Gly333取代了BphAELB400的Thr335。 BphAEB356。但是,BphAEB356与BphAEp400的突变体BphAEp400的生化和结构比较,BphAELB400的突变体是由BphAELB400的双取代Phe336Met Thr335Ala在先前的工作中获得的,提供了证据,证明BphAEB356的其他残基或结构特征无法通过对接实验精确鉴定。也是BphAEB356出色的催化能力的原因。在一起,这些数据提供了支持性证据,表明联苯分解代谢途径在蛋白质细菌中发生了分歧,其中一些可能起到与土壤中植物次生代谢产物代谢有关的生态功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号