首页> 外文期刊>Astronomy and astrophysics >Fine-scale density wave structure of Saturn's rings: A hydrodynamic theory
【24h】

Fine-scale density wave structure of Saturn's rings: A hydrodynamic theory

机译:土星环的细尺度密度波结构:水动力理论

获取原文
           

摘要

Aims. We examine the linear stability of the Saturnian ringdisk of mutually gravitating and physically colliding particles withspecial emphasis on its fine-scale mdensity wave structure, thatis, almost regularly spaced, alignedcylindric density enhancements and optically-thin zones with the widthand the spacing between them of roughly several tens particlediameters. Methods. We analyze the Jeans' instabilities of gravityperturbations (e.g., those produced by a spontaneous disturbance)analytically by using the Navier-Stokes dynamical equations of acompressible fluid. The theory is not restricted by any assumptionsabout the thickness of the system. We consider a simple model of thesystem consisting of a three-dimensional ring disk that is weaklyinhomogeneous and whose structure is analyzed by making a horizontallylocal short-wave approximation. Results. We demonstrate that the disk is probably unstable andthat gravity perturbations grow effectively within a few orbitalperiods. We find that self-gravitation plays a key role in theformation of the fine structure. The predictions of the theory arecompared with observations of Saturn's rings by the Cassinispacecraft and are found to be in good agreement. Inparticular,itappears very likely that some of the quasi-periodicmicrostructures observed in Saturn'sA and Brings-both axisymmetric and nonaxisymmetric ones- are manifestations ofthese effects. We argue that the quasi-periodic density enhancementsrevealed in Cassini data are flattened structures, with aheight to width ratio of about0.3. One should analyzehigh-resolution of the order of 10m data acquired for theAand Brings (and probablyC ring aswell) to confirmthis prediction. We also show that the gravitational instability is apotential cluster-forming mechanism leading to the formation of porous100-m-diameter moonlets of preferred mass g each embedded in the outer Aring, although this has yet to be directly measured. Key words: planets and satellites: general - planets andsatellites: rings - planets and satellites: individual: Saturn -instabilities - hydrodynamics
机译:目的我们检查了相互引力和物理碰撞的颗粒的土星环盘的线性稳定性,特别强调了其细尺度的密度波结构,即几乎规则排列的,排列的圆柱体密度增强和光学上薄的区域,其宽度和它们之间的间距大致几十个粒径。方法。我们通过使用可压缩流体的Navier-Stokes动力学方程来分析Jeans的重力扰动不稳定性(例如,由自然扰动产生的扰动)。该理论不受有关系统厚度的任何假设的限制。我们考虑一个由三维环盘组成的系统的简单模型,该环盘是不均匀的,并且通过进行水平局部短波逼近来分析其结构。结果。我们证明了圆盘可能是不稳定的,并且重力扰动在几个轨道周期内有效地增长。我们发现,自重在精细结构的形成中起着关键作用。该理论的预言与卡西尼号太空船对土星环的观察相比较,并且发现两者之间具有很好的一致性。特别是,看起来很可能是土星的A和Brings中观察到的一些准周期微观结构(轴对称和非轴对称的微观结构)都是这些效应的体现。我们认为,卡西尼数据中显示的准周期密度增强是扁平结构,高宽比约为0.3。人们应该分析为A和Brings(可能还有C环)采集的10m数据的高分辨率,以确认这一预测。我们还表明,重力不稳定性是一种潜在的团簇形成机制,导致形成了质量为g的多孔100 m直径的小卫星,每个小卫星都嵌入外部Aring中,尽管尚未直接测量。关键词:行星和卫星:一般-行星和卫星:圆环-行星和卫星:个人:土星-不稳定性-流体动力学

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号