首页> 外文期刊>Applied Microbiology >Nitrate Consumers in Arctic Marine Eukaryotic Communities: Comparative Diversities of 18S rRNA, 18S rRNA Genes, and Nitrate Reductase Genes
【24h】

Nitrate Consumers in Arctic Marine Eukaryotic Communities: Comparative Diversities of 18S rRNA, 18S rRNA Genes, and Nitrate Reductase Genes

机译:北极海洋真核生物社区中的硝酸盐消费者:18S rRNA,18S rRNA基因和硝酸还原酶基因的比较多样性

获取原文
           

摘要

For photosynthetic microbial eukaryotes, the rate-limiting step in NO3? assimilation is its reduction to nitrite (NO2?), which is catalyzed by assimilatory nitrate reductase (NR). Oceanic productivity is primarily limited by available nitrogen and, although nitrate is the most abundant form of available nitrogen in oceanic waters, little is known about the identity of microbial eukaryotes that take up nitrate. This lack of knowledge is especially severe for ice-covered seas that are being profoundly affected by climate change. To address this, we examined the distribution and diversity of NR genes in the Arctic region by way of clone libraries and data mining of available metagenomes (total of 4.24 billion reads). We directly compared NR clone phylogenies with the V4 region of the 18S rRNA gene (DNA pool) and 18S rRNA (RNA pool) at two ice-influenced stations in the Canada Basin (Beaufort Sea). The communities from the two nucleic acid templates were similar at the level of major groups, and species identified by way of NR gene phylogeny and microscopy were a subset of the 18S results. Most NR genes from arctic clone libraries matched diatoms and chromist nanoflagellates, including novel clades, while the NR genes in arctic eukaryote metagenomes were dominated by chlorophyte NR, in keeping with the ubiquitous occurrence of Mamiellophyceae in the Arctic Ocean. Overall, these data suggest that a dynamic and mixed eukaryotic community utilizes nitrate across the Arctic region, and they show the potential utility of NR as a tool to identify ongoing changes in arctic photosynthetic communities.IMPORTANCE To better understand the diversity of primary producers in the Arctic Ocean, we targeted a nitrogen cycle gene, NR, which is required for phytoplankton to assimilate nitrate into organic forms of nitrogen macromolecules. We compared this to the more detailed taxonomy from ice-influenced stations using a general taxonomic gene (18S rRNA). NR genes were ubiquitous and could be classified as belonging to diatoms, dinoflagellates, other flagellates, chlorophytes, and unknown microbial eukaryotes, suggesting novel diversity of both species and metabolism in arctic phytoplankton.
机译:对于光合微生物真核生物,NO3中的限速步骤是?同化作用是将其还原为亚硝酸盐(NO2?),这是由同化硝酸还原酶(NR)催化的。海洋生产力主要受到可用氮的限制,尽管硝酸盐是海洋水体中可用氮的最丰富形式,但对于吸收硝酸盐的微生物真核生物的身份知之甚少。对于正受到气候变化深刻影响的冰雪覆盖的海洋,这种知识的缺乏尤其严重。为了解决这个问题,我们通过克隆库和可用元基因组的数据挖掘(总共42.4亿次读取)检查了北极地区NR基因的分布和多样性。我们直接比较了加拿大盆地(博福特海)两个受冰影响的站的NR克隆系统发育与18S rRNA基因(DNA库)和18S rRNA(RNA库)的V4区。来自两个核酸模板的群落在主要群体水平上是相似的,并且通过NR基因系统发育和显微镜鉴定的物种是18S结果的子集。北极克隆文库中的大多数NR基因都与硅藻和有色纳米鞭毛匹配,包括新颖的进化枝,而北极真核生物元基因组中的NR基因则以叶绿素NR为主,这与北极普遍存在的毛藻科一致。总体而言,这些数据表明动态和混合的真核生物群落在整个北极地区利用硝酸盐,并且它们显示出NR作为鉴定北极光合群落中正在进行的变化的工具的潜在效用。重要信息为了更好地了解该地区初级生产者的多样性在北冰洋,我们的目标是氮循环基因NR,这是浮游植物将硝酸盐吸收为有机形式的氮大分子所必需的。我们将其与使用普通生物分类基因(18S rRNA)的受冰影响站的更详细的分类进行了比较。 NR基因无处不在,可以归类为硅藻,鞭毛藻,其他鞭毛,叶绿藻和未知的微生物真核生物,这表明北极浮游植物的物种和代谢都具有新颖的多样性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号