首页> 外文期刊>Applied Microbiology >Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations
【24h】

Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations

机译:Mimetite的真菌生物风化作用和铅磷灰石矿物生物转化的一般地质学模型

获取原文
       

摘要

Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb_(5)(AsO_(4))_(3)Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb_(5)(PO_(4))_(3)Cl] and vanadinite [Pb_(5)(VO_(4))_(3)Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery.
机译:真菌在生物地球化学过程中起重要作用,例如有机物分解,矿物和岩石的生物风化以及金属转化,因此会影响必需和潜在有毒元素(例如P,S,Pb和As)的元素循环。砷是大多数生物的潜在有毒准金属,自然存在于土壤,岩石,水,空气和生物中。在自然界中存在的300多种砷矿物中,[Pb_(5)(AsO_(4))_(3)Cl]是最稳定的砷酸铅,在金属稳定化方面具有可观的前景,可用于原位和异位隔离和修复通过沉淀,其他不溶性铅磷灰石,如焦晶石[Pb_(5)(PO_(4))_(3)Cl]和钒铁矿[Pb_(5)(VO_(4))_(3)Cl]也是如此。尽管不易溶解,但生产有机酸的土壤真菌黑曲霉却能溶解蒙脱石,同时沉淀出草酸铅,作为一种新的致真菌生物矿物质。由于先前已经记录了焦亚铁矿和钒铁矿的真菌生物转化,因此在本研究中,通过地球化学建模和实验数据的应用,提出了一种新的生物地球化学模型,用于通过真菌对铅磷灰石进行生物成因转化(半金属矿,焦铁锰矿和钒铁矿)。这些模型与实验数据非常吻合,并根据例如pH,阳离子-阴离子组成和浓度,提供了As和Pb络合以及生物矿物质形成的精确模拟。提出了铅磷灰石矿物质真菌生物转化的一般模式,证明了对组成元素的生物地球化学循环以及金属稳定,生物修复和生物回收的工业应用的生态意义的新认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号