首页> 外文期刊>Applied Microbiology >Thermodynamic Constraints on Syntrophic Acetate Oxidation
【24h】

Thermodynamic Constraints on Syntrophic Acetate Oxidation

机译:合成乙酸乙酸的热力学约束

获取原文
       

摘要

Syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis has been identified as a significant anaerobic pathway in high-temperature (55C) oil fields (1, 2). In a paper on acetate production from oil under sulfate-reducing conditions, Callbeck et al. (3) took note of that observation, only to emphatically state that syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis is not thermodynamically feasible at lower temperatures, as in the Medicine Hat Glauconitic C field (MHGC field). This is not necessarily true. Syntrophic associations are known to metabolize at close to thermodynamic equilibrium (Gibbs free energy [ G ] 0) (4). At the temperature of the MHGC field (22C) (5) and under environmentally realistic conditions (acetate 5 mM, CO_(2) and CH_(4) at 1 atm, and pH 7) the amount of G available from acetate oxidation coupled to H_(2)-driven methanogenesis is 22.0 kJ/mol, which allows for a substantial window of opportunity in which both reactions are exergonic (Fig. 1A).Thermodynamic constraints on syntrophic processes involved in hydrocarbon degradation under sulfate-reducing and methanogenic conditions at 22C under standard conditions (solutes at 1 M, gases at 1 atm, unless otherwise indicated), with hexadecane as the model hydrocarbon and hydrogen (A) or formate (B) as the interspecies electron carrier. (A) Acetate oxidation is exergonic to the right of the dotted line; hydrogenotrophic methanogenesis is exergonic at hydrogen partial pressure ( P _(H2)) 10~(5.84) atm (open circles); hydrogenotrophic sulfate reduction is exergonic at P _(H2) 10~(6.73) atm (closed circles). (B) Acetate oxidation is exergonic to the right of the dotted line; formate-driven methanogenesis is exergonic at [formate] 10~(5.65) M (open circles); formate-driven sulfate reduction is exergonic at [formate] 10~(6.54) M (closed circles); calculations after Dolfing et al. (17).
机译:在高温(55C)油田中,与氢营养型甲烷化作用相关的乙酸同养型氧化被认为是重要的厌氧途径(1、2)。在一篇关于在硫酸盐还原条件下从油中生产乙酸盐的论文中,Callbeck等人。 (3)注意到这一观察,只是强调指出在低温下,与氢营养型甲烷生成偶联的同养乙酸酯氧化在热力学上是不可行的,例如在梅迪辛哈德·冈古尼丁C场(MHGC场)中。这不一定是真的。已知同养关系在接近热力学平衡(吉布斯自由能[G] 0)时代谢(4)。在MHGC场(22C)(5)的温度下以及在环境实际条件下(乙酸5 mM,CO_(2)和CH_(4)在1个大气压下以及pH值为7),可将乙酸氧化产生的G量耦合到H_(2)驱动的甲烷生成为22.0 kJ / mol,这为两个反应都施加了充能性提供了实质性的机会(图1A)。在硫酸盐还原和甲烷化条件下,降解过程涉及碳氢化合物分解的热力学约束。在标准条件下(除非另有说明,否则在22°C下,溶质为1 M,气体为1 atm,除非另有说明),以十六烷为模型烃,氢(A)或甲酸盐(B)作为种间电子载体。 (A)乙酸盐氧化作用在虚线右边;在氢分压(P _(H2))10〜(5.84)atm(空心)下,氢营养型甲烷生成是能动的。在P _(H2)10〜(6.73)atm(实心圆)处,硫酸氢营养的还原是能动的。 (B)乙酸盐在虚线的右边是强电的;甲酸驱动的甲烷生成在[甲酸酯] 10〜(5.65)M时是能动的(空心圆);甲酸驱动的硫酸盐还原在[甲酸酯] 10〜(6.54)M时是能动的(实心圆); Dolfing等人之后的计算。 (17)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号