首页> 外文期刊>Applied Microbiology >Ring-Cleaving Dioxygenases with a Cupin Fold
【24h】

Ring-Cleaving Dioxygenases with a Cupin Fold

机译:环形折叠的双加氧酶

获取原文
       

摘要

Ring-cleaving dioxygenases catalyze key reactions in the aerobic microbial degradation of aromatic compounds. Many pathways converge to catecholic intermediates, which are subject to ortho or meta cleavage by intradiol or extradiol dioxygenases, respectively. However, a number of degradation pathways proceed via noncatecholic hydroxy-substituted aromatic carboxylic acids like gentisate, salicylate, 1-hydroxy-2-naphthoate, or aminohydroxybenzoates. The ring-cleaving dioxygenases active toward these compounds belong to the cupin superfamily, which is characterized by a six-stranded β-barrel fold and conserved amino acid motifs that provide the 3His or 2- or 3His-1Glu ligand environment of a divalent metal ion. Most cupin-type ring cleavage dioxygenases use an Fe~(II) center for catalysis, and the proposed mechanism is very similar to that of the canonical (type I) extradiol dioxygenases. The metal ion is presumed to act as an electron conduit for single electron transfer from the metal-bound substrate anion to O_(2), resulting in activation of both substrates to radical species. The family of cupin-type dioxygenases also involves quercetinase (flavonol 2,4-dioxygenase), which opens up two C-C bonds of the heterocyclic ring of quercetin, a wide-spread plant flavonol. Remarkably, bacterial quercetinases are capable of using different divalent metal ions for catalysis, suggesting that the redox properties of the metal are relatively unimportant for the catalytic reaction. The major role of the active-site metal ion could be to correctly position the substrate and to stabilize transition states and intermediates rather than to mediate electron transfer. The tentative hypothesis that quercetinase catalysis involves direct electron transfer from metal-bound flavonolate to O_(2) is supported by model chemistry.
机译:环裂解双加氧酶催化芳香化合物有氧微生物降解中的关键反应。许多途径汇聚到儿茶酚中间体上,后者分别通过内二醇或外二醇双加氧酶进行邻位或间位裂解。然而,许多降解途径是通过非儿茶酚羟基取代的芳族羧酸进行的,例如龙胆酸酯,水杨酸酯,1-羟基-2-萘甲酸或氨基羟基苯甲酸酯。对这些化合物有活性的开环双加氧酶属于铜氨超家族,其特征是六链β-桶状折叠和保守的氨基酸基序,可提供二价金属离子的3His或2-His-1Glu配体环境。大多数铜氨型环裂解双加氧酶都使用Fe〜(II)中心进行催化,并且所提出的机理与经典(I型)外二醇双加氧酶的机理非常相似。据推测,金属离子充当电子导管,用于单电子从结合金属的基质阴离子转移到O_(2),从而使两种基质均活化为自由基。铜蛋白型双加氧酶家族还涉及槲皮素酶(黄酮醇2,4-二加氧酶),该酶打开了槲皮素杂环(广泛分布的植物黄酮醇)的两个C-C键。值得注意的是,细菌槲皮素酶能够使用不同的二价金属离子进行催化,这表明金属的氧化还原特性对于催化反应而言并不重要。活性部位金属离子的主要作用可能是正确定位基质并稳定过渡态和中间体,而不是介导电子转移。模型化学支持了槲皮素酶催化涉及从金属结合的黄酮酸酯到O_(2)的直接电子转移的初步假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号