首页> 外文期刊>Applied Microbiology >Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose
【24h】

Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose

机译:确认和消除葡萄糖磷酸烯醇丙酮酸依赖性磷酸转移酶系统缺陷的丙酮丁醇梭菌同时利用葡萄糖,木糖和阿拉伯糖的木糖代谢瓶颈

获取原文
       

摘要

Efficient cofermentation of d-glucose, d-xylose, and l-arabinose, three major sugars present in lignocellulose, is a fundamental requirement for cost-effective utilization of lignocellulosic biomass. The Gram-positive anaerobic bacterium Clostridium acetobutylicum , known for its excellent capability of producing ABE (acetone, butanol, and ethanol) solvent, is limited in using lignocellulose because of inefficient pentose consumption when fermenting sugar mixtures. To overcome this substrate utilization defect, a predicted glcG gene, encoding enzyme II of the d-glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS), was first disrupted in the ABE-producing model strain Clostridium acetobutylicum ATCC 824, resulting in greatly improved d-xylose and l-arabinose consumption in the presence of d-glucose. Interestingly, despite the loss of GlcG, the resulting mutant strain 824glcG fermented d-glucose as efficiently as did the parent strain. This could be attributed to residual glucose PTS activity, although an increased activity of glucose kinase suggested that non-PTS glucose uptake might also be elevated as a result of glcG disruption. Furthermore, the inherent rate-limiting steps of the d-xylose metabolic pathway were observed prior to the pentose phosphate pathway (PPP) in strain ATCC 824 and then overcome by co-overexpression of the d-xylose proton-symporter (cac1345), d-xylose isomerase (cac2610), and xylulokinase (cac2612). As a result, an engineered strain (824glcG-TBA), obtained by integrating glcG disruption and genetic overexpression of the xylose pathway, was able to efficiently coferment mixtures of d-glucose, d-xylose, and l-arabinose, reaching a 24% higher ABE solvent titer (16.06 g/liter) and a 5% higher yield (0.28 g/g) compared to those of the wild-type strain. This strain will be a promising platform host toward commercial exploitation of lignocellulose to produce solvents and biofuels.
机译:木质纤维素中存在的三种主要糖d-葡萄糖,d-木糖和l-阿拉伯糖的有效联合发酵是成本有效利用木质纤维素生物质的基本要求。革兰氏阳性厌氧细菌梭状芽胞杆菌(Clostridium acetobutylicum)以生产ABE(丙酮,丁醇和乙醇)溶剂的出色能力而著称,由于发酵糖混合物时戊糖消耗效率低,因此限制了木质纤维素的使用。为了克服这种底物利用缺陷,编码d-葡萄糖磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS)的编码酶II的预测glcG基因首先在产ABE的模型菌株丙酮丁醇梭状芽孢杆菌ATCC 824中被破坏,从而大大改善了d-在d-葡萄糖存在下消耗木糖和1-阿拉伯糖。有趣的是,尽管丢失了GlcG,但所得突变菌株824glcG与亲本菌株一样有效地发酵了d-葡萄糖。这可能归因于残余的葡萄糖PTS活性,尽管葡萄糖激酶的活性增加表明,由于glcG破坏,非PTS葡萄糖摄取也可能增加。此外,在菌株ATCC 824中先于戊糖磷酸途径(PPP)观察到了d-木糖代谢途径的固有限速步骤,然后通过d-木糖质子符号(cac1345)的共过量表达克服了d-木糖代谢途径的固有限速步骤。 -木糖异构酶(cac2610)和木酮糖激酶(cac2612)。结果,通过整合glcG破坏和木糖途径的遗传过表达获得的工程菌株(824glcG-TBA)能够有效地共同发酵d-葡萄糖,d-木糖和l-阿拉伯糖的混合物,达到24%与野生型菌株相比,ABE溶剂效价更高(16.06 g /升),产量提高了5%(0.28 g / g)。该菌株将成为有希望的平台,可用于商业开发木质纤维素以生产溶剂和生物燃料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号