首页> 外文期刊>Applied and Environmental Microbiology >Characterization of Xylan Utilization and Discovery of a New Endoxylanase in Thermoanaerobacterium saccharolyticum through Targeted Gene Deletions
【24h】

Characterization of Xylan Utilization and Discovery of a New Endoxylanase in Thermoanaerobacterium saccharolyticum through Targeted Gene Deletions

机译:木糖利用的表征和新的内切木聚糖酶在嗜热厌氧杆菌中的通过目标基因删除的发现。

获取原文
获取外文期刊封面目录资料

摘要

The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C5 and C6 sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of β-xylosidase xylD slowed the growth of T. saccharolyticum on birchwood xylan and led to an accumulation of short-chain xylo-oligomers, no other single deletion, including the deletion of the previously characterized endoxylanase XynA, had a phenotype distinct from that of the wild type. This result indicates a multiplicity of xylanase enzymes which facilitate xylan degradation in T. saccharolyticum. Growth on xylan was prevented only when a previously uncharacterized endoxylanase encoded by xynC was also deleted in conjunction with xynA. Sequence analysis of xynC indicates that this enzyme, a low-molecular-weight endoxylanase with homology to glycoside hydrolase family 11 enzymes, is secreted yet untethered to the cell wall. Together, these observations expand our understanding of the enzymatic basis of xylan hydrolysis by T. saccharolyticum.
机译:从木质纤维素经济地生产燃料和商品化学品需要同时利用纤维素和半纤维素馏分。木聚糖酶允许更多地利用半纤维素,同时也增加纤维素的水解。最近的代谢工程学努力已经产生了一种解热嗜热厌氧杆菌菌株,该菌株可以高产率将C5和C6糖以及不溶性木聚糖转化为乙醇。为了更好地了解木聚糖在该生物体中的溶解过程,在均产乙醇的解糖丁糖酵母菌株M0355中构建了一系列靶向缺失,以表征该生物体中木聚糖的水解和木糖利用。虽然β-木糖苷酶xylD的缺失减慢了桦木木聚糖上解糖糖衣杆菌的生长并导致短链木糖寡聚体的积累,但没有其他单个缺失,包括先前表征的内切木聚糖酶XynA的缺失,具有明显的表型。从野生型。该结果表明了多种木聚糖酶,其促进了在解糖T.糖中的木聚糖降解。只有当xynC编码的先前未鉴定的内切木聚糖酶也与xynA一起缺失时,才能阻止木聚糖的生长。 xynC的序列分析表明,该酶是一种与糖苷水解酶家族11酶具有同源性的低分子量内切木聚糖酶,是分泌的,但不受束缚在细胞壁上。在一起,这些观察结果扩展了我们对解糖丁糖胶水解木聚糖的酶学基础的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号