首页> 外文期刊>Applied and Environmental Microbiology >Formate as an Auxiliary Substrate for Glucose-Limited Cultivation of Penicillium chrysogenum: Impact on Penicillin G Production and Biomass Yield
【24h】

Formate as an Auxiliary Substrate for Glucose-Limited Cultivation of Penicillium chrysogenum: Impact on Penicillin G Production and Biomass Yield

机译:甲酸酯作为葡萄糖限制培养黄青霉的辅助底物:对青霉素G产量和生物量产量的影响

获取原文
           

摘要

Production of β-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol·mol?1, an increasing rate of formate oxidation via a cytosolic NAD+-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol·mol?1, the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as β-lactams.
机译:丝状真菌产黄青霉产生β-内酰胺需要大量的ATP输入。在葡萄糖受限的生长过程中,该ATP来源于葡萄糖异化,这降低了葡萄糖的产物收率。本研究调查了通过辅助进料作为能量源而不是碳底物的辅助进料是否可以提高青霉素G在葡萄糖上的产量。作为模型系统,在化学恒温器培养物中,在含有不同摩尔比的甲酸和葡萄糖的混合底物上,生长了产黄青霉的高产工业菌株。直到甲酸与葡萄糖的比率为4.5 mol·mol?1,通过胞质NAD +依赖的甲酸脱氢酶的甲酸氧化增加速率逐渐取代了葡萄糖的异化流。这导致增加了葡萄糖的生物量产量。由于在这些甲酸酯/葡萄糖比率下,特定的青霉素G生产率保持恒定,因此容积生产率提高了。代谢建模研究表明,产黄青霉中的甲酸盐运输不需要输入自由能。当甲酸与葡萄糖的比例高于4.5 mol·mol?1时,培养物中残留的甲酸浓度会增加,这可能是由于甲酸氧化系统的动力学限制所致。甲酸盐的积累与甲酸盐氧化与生物量和青霉素G的生产之间的偶联作用丧失相吻合。这些结果表明,原则上,混合底物进料可用于提高同化产品碳源的收率,例如作为β-内酰胺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号