...
首页> 外文期刊>Applied and Environmental Microbiology >Sequence versus Structure for the Direct Detection of 16S rRNA on Planar Oligonucleotide Microarrays
【24h】

Sequence versus Structure for the Direct Detection of 16S rRNA on Planar Oligonucleotide Microarrays

机译:在平面寡核苷酸微阵列上直接检测16S rRNA的序列与结构

获取原文

摘要

A two-probe proximal chaperone detection system consisting of a species-specific capture probe for the microarray and a labeled, proximal chaperone probe for detection was recently described for direct detection of intact rRNAs from environmental samples on oligonucleotide arrays. In this study, we investigated the physical spacing and nucleotide mismatch tolerance between capture and proximal chaperone detector probes that are required to achieve species-specific 16S rRNA detection for the dissimilatory metal and sulfate reducer 16S rRNAs. Microarray specificity was deduced by analyzing signal intensities across replicate microarrays with a statistical analysis-of-variance model that accommodates well-to-well and slide-to-slide variations in microarray signal intensity. Chaperone detector probes located in immediate proximity to the capture probe resulted in detectable, nonspecific binding of nontarget rRNA, presumably due to base-stacking effects. Species-specific rRNA detection was achieved by using a 22-nt capture probe and a 15-nt detector probe separated by 10 to 14 nt along the primary sequence. Chaperone detector probes with up to three mismatched nucleotides still resulted in species-specific capture of 16S rRNAs. There was no obvious relationship between position or number of mismatches and within- or between-genus hybridization specificity. From these results, we conclude that relieving secondary structure is of principal concern for the successful capture and detection of 16S rRNAs on planar surfaces but that the sequence of the capture probe is more important than relieving secondary structure for achieving specific hybridization.
机译:最近描述了一种双探针近端分子伴侣检测系统,该系统由用于微阵列的物种特异性捕获探针和用于检测的标记的近端分子伴侣探针组成,用于直接检测寡核苷酸阵列上环境样品中的完整rRNA。在这项研究中,我们调查了捕获和近端伴侣检测器探针之间的物理间距和核苷酸错配耐受性,这些探针对于异化金属和硫酸盐还原剂16S rRNA实现物种特异性16S rRNA检测是必需的。通过使用统计差异分析模型分析复制的微阵列之间的信号强度来推导微阵列特异性,该模型可以容纳微阵列信号强度的井间和载玻片间差异。紧邻捕获探针的分子伴侣检测探针可能导致非靶rRNA的可检测的非特异性结合,这可能是由于碱基堆积效应所致。通过使用22-nt捕获探针和15-nt检测探针沿一级序列分隔10至14 nt,可以实现物种特异性rRNA检测。具有多达三个错配核苷酸的伴侣检测器探针仍可导致物种特异性捕获16S rRNA。错配的位置或数目与属内或属间杂交特异性之间没有明显的关系。根据这些结果,我们得出结论,释放二级结构是在平面上成功捕获和检测16S rRNA的主要考虑因素,但是捕获探针的序列比释放二级结构对于实现特异性杂交更为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号