...
首页> 外文期刊>Applied and Environmental Microbiology >Identification of a Third Sulfate Activation System in Sinorhizobium sp. Strain BR816: the CysDN Sulfate Activation Complex
【24h】

Identification of a Third Sulfate Activation System in Sinorhizobium sp. Strain BR816: the CysDN Sulfate Activation Complex

机译:中华根瘤菌中第三个硫酸盐活化系统的鉴定菌株BR816:CysDN硫酸盐活化复合物

获取原文
           

摘要

Sinorhizobium sp. strain BR816 possesses two nodPQ copies, providing activated sulfate (3′-phosphoadenosine-5′-phosphosulfate [PAPS]) needed for the biosynthesis of sulfated Nod factors. It was previously shown that the Nod factors synthesized by a nodPQ double mutant are not structurally different from those of the wild-type strain. In this study, we describe the characterization of a third sulfate activation locus. Two open reading frames were fully characterized and displayed the highest similarity with the Sinorhizobium meliloti housekeeping ATP sulfurylase subunits, encoded by the cysDN genes. The growth characteristics as well as the levels of Nod factor sulfation of a cysD mutant (FAJ1600) and a nodP1 nodQ2 cysD triple mutant (FAJ1604) were determined. FAJ1600 shows a prolonged lag phase only with inorganic sulfate as the sole sulfur source, compared to the wild-type parent. On the other hand, FAJ1604 requires cysteine for growth and produces sulfate-free Nod factors. Apigenin-induced nod gene expression for Nod factor synthesis does not influence the growth characteristics of any of the strains studied in the presence of different sulfur sources. In this way, it could be demonstrated that the “household” CysDN sulfate activation complex of Sinorhizobium sp. strain BR816 can additionally ensure Nod factor sulfation, whereas the symbiotic PAPS pool, generated by the nodPQ sulfate activation loci, can be engaged for sulfation of amino acids. Finally, our results show that rhizobial growth defects are likely the reason for a decreased nitrogen fixation capacity of bean plants inoculated with cysD mutant strains, which can be restored by adding methionine to the plant nutrient solution.
机译:中华根瘤菌 sp。 BR816菌株拥有两个 nodPQ 拷贝,可提供生物合成硫酸化Nod因子所需的活化硫酸盐(3'-磷酸腺苷-5'-磷酸硫酸盐[PAPS])。先前显示,由 nodPQ 双重突变体合成的Nod因子与野生型菌株在结构上没有差异。在这项研究中,我们描述了第三个硫酸盐活化位点的表征。两个开放阅读框架得到充分表征,并显示与 cysDN 基因编码的中华根瘤菌 meliloti 管家ATP硫化酶亚基的最高相似性。测定了 cysD 突变体(FAJ1600)和 nodP1 nodQ2 cysD 三重突变体(FAJ1604)的生长特性以及Nod因子硫酸盐的水平。与野生型亲本相比,FAJ1600仅使用无机硫酸盐作为唯一的硫源,显示出延长的延迟期。另一方面,FAJ1604需要半胱氨酸才能生长,并产生不含硫酸盐的Nod因子。芹菜素诱导的Nod因子合成的 nod 基因表达不影响在存在不同硫源的情况下研究的任何菌株的生长特性。通过这种方式,可以证明根瘤菌 sp的“家用” CysDN硫酸盐活化复合物。菌株BR816还可以确保Nod因子硫酸化,而由 nodPQ 硫酸盐激活位点产生的共生PAPS库可以用于氨基酸的硫酸化。最后,我们的结果表明,根瘤菌的生长缺陷可能是接种 cysD 突变菌株的豆类植物固氮能力下降的原因,可以通过在植物营养液中添加甲硫氨酸来恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号