...
首页> 外文期刊>Critical care : >Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects
【24h】

Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects

机译:通过体外体外循环肺通气在部分心肺旁路灌注的绵羊体内施用硫化氢:关于代谢和血管舒缩作用的概念研究的证明

获取原文
           

摘要

IntroductionAlthough inhalation of 80 parts per million (ppm) of hydrogen sulfide (H2S) reduces metabolism in mice, doses higher than 200 ppm of H2S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of H2S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of H2S inhalation at high concentrations, we investigated whether administering H2S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep.MethodsA partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm H2S for intervals of 1 hour. Metabolic rate was estimated on the basis of total CO2 production (V˙CO2) and O2 consumption (V˙O2). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters.ResultsV˙CO2, V˙O2, and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm H2S. Administration of 100, 200 and 300 ppm H2S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/cm5, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm H2S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm H2S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/cm5 (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm H2S impaired arterial oxygenation (PaO2 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with H2S; P ≤ 0.05).ConclusionsAdministration of up to 300 ppm H2S via ventilation of an extracorporeal membrane lung does not reduce V˙CO2 and V˙O2, but causes dose-dependent pulmonary vasoconstriction and systemic vasodilation. These results suggest that administration of high concentrations of H2S in venoarterial cardiopulmonary bypass circulation does not reduce metabolism in anesthetized sheep but confers systemic and pulmonary vasomotor effects.
机译:简介虽然吸入百万分之80(ppm)的硫化氢(H2S)会降低小鼠的新陈代谢,但需要200 ppm以上的H2S剂量才能抑制大鼠的新陈代谢。因此,我们假设需要更大浓度的H2S才能减少大型哺乳动物和人类的新陈代谢。为了避免高浓度吸入H2S的潜在肺毒性,我们调查了通过体外膜肺(ECML)的通气施用H2S是否可以提供控制绵羊体内代谢率的方法。方法在麻醉,通气的情况下建立部分静脉-动脉体外循环(吸氧分数= 0.5)绵羊。用空气或包含100、200或300 ppm H2S的空气交替通风ECML,间隔1小时。根据总的CO2产量(V˙CO2)和O2消耗量(V˙O2)估算代谢率。通过留置股动脉和肺动脉导管进行连续的血流动力学监测,结果当ECML进行空气通气时,V˙CO2,V˙O2和心输出量均在正常生理范围内,并且在最高300 ppm H2S给药后没有变化。施用100、200和300 ppm H2S分别使肺血管阻力增加46、52和141 dyn·s / cm5(空气中的所有P≤0.05,分别相对于100、200和300 ppm H2S)和平均肺动脉压力分别降低4 mmHg(P≤0.05),3 mmHg(ns)和11 mmHg(P≤0.05),而不会改变肺毛细血管楔压或心输出量。暴露于300 ppm H2S可使全身血管阻力从1,561±553降低至870±138 dyn·s / cm5(P≤0.05),平均动脉压从121±15 mmHg降低至66±11 mmHg(P≤0.05)。此外,暴露于300 ppm H2S会损害动脉氧合(空气中的PaO2 114±36 mmHg相对于含H2S的83±23 mmHg; P≤0.05)结论通过体外膜肺通气给予最高300 ppm H2S的作用不会减少V˙CO2和V˙O2,但引起剂量依赖性的肺血管收缩和全身血管舒张。这些结果表明在静脉动脉心肺旁路循环中施用高浓度的H2S不会降低麻醉绵羊的新陈代谢,但会产生全身和肺血管舒缩作用。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号