...
首页> 外文期刊>British Journal of Cancer >Combining targeted therapeutics in the era of precision medicine
【24h】

Combining targeted therapeutics in the era of precision medicine

机译:精准医学时代结合靶向治疗

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We have now entered the era of precision medicine, armed with an armamentarium of novel antitumour agents against a range of critical oncogenic drivers ( Tsimberidou et al , 2014 ). Although there have been noteworthy successes, patient benefit with single agent targeted therapies has been generally modest ( Yap et al , 2013 ). The reasons for this are multifactorial and well described; they include the disruption of feedback loops, development of crosstalk and other escape mechanisms observed with signalling pathway inhibitors, as well as other issues such as intratumoural heterogeneity. The co-development of investigational targeted agents is thus arguably one of the most important challenges in cancer medicine today. In the article by Wilky and colleagues, the investigators present findings from a phase I study assessing the vertical blockade of MEK1/2 and insulin growth factor-1 receptor (IGF-1R) with the small molecule selumetinib (AstraZeneca, Macclesfield, UK) and monoclonal antibody cixutumumab (ImClone Systems Inc., Bridgewater, NJ, USA), respectively ( Wilky et al , 2014 ). Both selumetinib and cixutumumab had modest antitumour activity as single agents, providing the impetus for this and other targeted combination strategies ( Table 1 ) ( Rothenberg et al , 2007 ; Banerji et al , 2010 ). To our knowledge, this is the first published trial of a combination involving IGF-1R and MEK inhibitors, which aims to minimise the effects of feedback loops that may lead to the development of drug resistance ( Flanigan et al , 2013 ). The authors should be commended for this well-conducted study involving two investigational agents from different pharmaceutical companies. The primary objectives of safety and tolerability were achieved, and the maximum tolerated combination dose was 50?mg twice daily of selumetinib and 12?mg?kg~(?1)of cixutumumab given every 2 weeks; these were also the starting doses of both drugs in this study. The single agent maximum tolerated dose (MTD) of selumetinib was previously established at 75?mg twice daily, whereas cixutumumab monotherapy demonstrated safety at 15?mg?kg~(?1)every 2 weeks ( Rothenberg et al , 2007 ; Banerji et al , 2010 ). In view of the relatively high starting doses, it is not surprising that the combination MTD was established after a single dose escalation using a conventional 3+3 phase I study design. Other phase I trial designs that could also be considered for such targeted combination studies include a bidirectional-dosing plan, determined by a rule-based up-and-down design ( Gandhi et al , 2014 ). This could potentially lead to the identification of two different MTDs: a selumetinib-high and/or a cixutumumab-high dose. Alternatively, model-based designs that use statistical models to establish a dose–outcome relationship to guide the dose-finding process may also be pursued ( Mandrekar, 2014 ). Such a model-based strategy enables more patients to be treated at doses closer to the MTD, reducing the number of patients required on study. Intra-patient dose escalation of one or both drugs in all patients is another combination strategy that could be considered ( Yap et al , 2013 ). The DLTs of ophthalmic symptoms in two of seven patients treated at the second dose level, and ophthalmic adverse events in 40% of patients were likely to be a manifestation of the well-described selumetinib-related mechanism-based ocular toxicities ( Banerji et al , 2010 ). Other important adverse events observed with this combination include rash (77%), mucositis (53%), gastrointestinal symptoms and hyperglycaemia. Although not DLTs, such toxicities may ultimately limit the chronic use of these drugs in combination and impact patient benefit in late phase clinical trials. Although the single agent MTD of selumetinib was not reached in this trial, data from the monotherapy study suggest that the dose of 50?mg twice daily is biologically active ( Banerji et al , 2010 ). In addition, Wilky and colleagues report a correlation between the plasma drug PK levels and decreases in tumour ERK and S6 phosphorylation by immunohistochemistry, albeit in a small number of patients. Although the suppression of phosphorylated S6 in post-treatment tumour biopsies may indicate that the PI3K-AKT pathway was potentially modulated, S6 phosphorylation is not a direct readout of IGF-1R inhibition, in contrast to other markers such as IGF-1R expression or total and free IGF-1 ( Larsson et al , 2007 ). It would also have been interesting to conduct detailed biomarker studies to evaluate the effects of the combination treatment on feedback loops along the IGF-1R-MEK signalling axis. Only 9 of 30 (30%) patients had BRAF mutation status available for this combination treatment involving a MEK inhibitor. In light of the multiple next-generation sequencing (NGS) technologies currently available in the clinic, should all patient tumours have been tested? In such a phase I trial involving patients with different
机译:我们现在已经进入了精准医学时代,配备了新型抗肿瘤药的武器库,可对抗一系列关键的致癌驱动因子(Tsimberidou等,2014)。尽管已经取得了显著成功,但单药靶向治疗对患者的益处通常很小(Yap等,2013)。造成这种情况的原因是多方面的,并且已得到充分描述;它们包括反馈回路的破坏,串扰的发展以及通过信号通路抑制剂观察到的其他逃逸机制,以及其他问题,例如肿瘤内异质性。因此,研究目标药物的共同开发可以说是当今癌症医学中最重要的挑战之一。在Wilky及其同事的文章中,研究人员介绍了I期研究的结果,该研究评估了小分子selumetinib(AstraZeneca,Macclesfield,英国)对MEK1 / 2和胰岛素生长因子1受体(IGF-1R)的垂直阻断作用,以及单克隆抗体cixutumumab(ImClone Systems Inc.,Bridgewater,NJ,美国)分别(Wilky等,2014)。 selumetinib和cixutumumab作为单一药物均具有适度的抗肿瘤活性,从而为该药物和其他靶向联合治疗策略提供了动力(表1)(Rothenberg等,2007; Banerji等,2010)。据我们所知,这是涉及IGF-1R和MEK抑制剂的组合的首次发表试验,其目的是最大程度地减少可能导致耐药性发展的反馈回路的影响(Flanigan等,2013)。这项研究进行得很好,涉及来自不同制药公司的两名研究人员,因此应受到作者的称赞。达到了安全性和耐受性的主要目的,最大耐受联合剂量为每天两次两次服用50mg塞来替尼和每2周一次服用12mgmgkg〜(?1)西妥木单抗。这些也是本研究中两种药物的起始剂量。塞鲁替尼的单药最大耐受剂量(MTD)先前确定为每天75?mg,每天两次,而西妥珠单抗单药治疗表明安全性为每2周15?mg?kg〜(?1)(Rothenberg等,2007; Banerji等。 ,2010年)。鉴于较高的起始剂量,使用常规3 + 3 I期研究设计在单次剂量递增后建立MTD组合就不足为奇了。也可以考虑用于此类靶向组合研究的其他I期试验设计包括双向剂量方案,该方案由基于规则的上下设计确定(Gandhi等,2014)。这可能会导致鉴定两种不同的MTD:selumetinib高剂量和/或cixutumumab高剂量。或者,也可以追求基于模型的设计,该模型使用统计模型建立剂量-结果关系以指导剂量确定过程(Mandrekar,2014)。这种基于模型的策略使更多患者可以更接近MTD的剂量接受治疗,从而减少了研究所需的患者数量。所有患者中一种或两种药物的患者内剂量递增是可以考虑的另一种联合策略(Yap等,2013)。在第二剂量水平下治疗的7例患者中有2例的眼部症状DLT以及40%的患者的眼部不良事件很可能是与selumetinib相关的基于机制的眼毒性的一种表现(Banerji等人, 2010)。通过这种组合观察到的其他重要不良事件包括皮疹(77%),粘膜炎(53%),胃肠道症状和高血糖症。尽管不是DLT,但这种毒性最终可能会限制这些药物的长期联合使用,并影响后期临床试验中患者的获益。尽管在该试验中未达到selumetinib的单药MTD,但单药治疗研究的数据表明,每天两次50 µmg的剂量具有生物活性(Banerji等,2010)。另外,Wilky及其同事报告了血浆药物PK水平与通过免疫组织化学的肿瘤ERK和S6磷酸化水平降低之间的相关性,尽管有少数患者。尽管在治疗后的肿瘤活检中磷酸化S6的抑制可能表明PI3K-AKT途径可能受到调节,但与其他标记(例如IGF-1R表达或总标记)相比,S6磷酸化不是直接读出IGF-1R抑制作用。和游离的IGF-1(Larsson等,2007)。进行详细的生物标记研究以评估联合治疗对沿着IGF-1R-MEK信号轴的反馈环的影响也将很有趣。 30例患者中只有9例(30%)具有可用于MEK抑制剂的联合治疗的BRAF突变状态。根据目前临床上可用的多种下一代测序(NGS)技术,是否应检查所有患者肿瘤?在这样的第一阶段试验中,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号